Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 119))

Abstract

Roentgen’s discovery of x-rays revolutionized diagnostic medicine. For the first time, physicians could visualize internal organs and determine with precision whether bones were broken, hearts enlarged, or lungs opacified. Cannon’s introduction of heavy element contrast material to study the physiology of the gastrointestinal system opened up another dimension and increased the utility of radiological procedures. Heavy element contrast material was used, albeit briefly, to visualize the liver and spleen with thorotrast and, more lastingly, as iodinated material to display the kidneys, vascular system and spinal canal. Obversely, air has been used as a contrast agent in the nervous system and bowel as well. With these Important but relatively primitive tools, a vast experience with two-dimensional radiology was developed along with procedures that by the early 1960s were providing some 60% of all medical diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 909.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langevin, M.P. Les ondes ultrasonores. Rev. Gen. Electr. 23 (1928) 626.

    Google Scholar 

  2. Dussik, K.T. Uber die mogleckeit hochfrequent mechanische Schwingungen als diagnostiches hilfmittel zu verwenden. Ages. Neurol. Psych. 174 (1942) 143.

    Google Scholar 

  3. Ludwig, G.D. and F.W. Struthers. Considerations underlying the use of ultrasound to detect gallstones and foreign bodies in tissues. Naval Medical Research Institute Project NM 004 001 4 (1949) 1–23.

    Google Scholar 

  4. Ludwig, G.D. The velocity of sound through tissues and the acoustic impedance of tissues. J. Accoust. Soc. Am. 22 (1950) 862.

    Article  Google Scholar 

  5. Wild, J. J. and J. M. Reid. Application of echo-ranging techniques to the determination of structure of biological tissues. Science 115 (1952) 226.

    Article  PubMed  CAS  Google Scholar 

  6. Howry, D.H. and W.R. Bliss. Ultrasonic visualization of soft tissue structures of the body. J. Lab. Clin. Med. 40 (1952) 579.

    PubMed  CAS  Google Scholar 

  7. Holmes, J. H. and D.H. Howry. Ultrasonic visualization of edema. Trans. Am. Clin. Climatol. Assoc. 70 (1958) 225.

    Google Scholar 

  8. Donald, I., J. MacVicar and T.G. Brown. Investigation of abdominal masses by pulsed ultrasound. Lancet 1 (1958) 1188.

    Article  PubMed  CAS  Google Scholar 

  9. Kossoff, G., D.E. Robinson and W.J. Garrett. Two dimensional ultrasonography in obstetrics. In Diagnostic Ultrasound, ed. C.C. Grossman, J. H. Holmes, C. Joyner and E.W. Purnell. New York, Plenum Press, 1966, pp. 333–347.

    Google Scholar 

  10. Edler, I. and CH. Hertz. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. K. Fysiogr. Saellsk. Lund Foerh. 24 (1954) 40.

    Google Scholar 

  11. Edler, I. Ultrasound-cardiogram in mitral valvular diseases. Acta Chir. Scand. 111 (1956) 230.

    Google Scholar 

  12. Effert, S., W. Bleifeld, F.J. Deupmann and J. Karitsiotis. Diagnostic value of ultrasonic cardiography. Br. J. Radiol. 37 (1964) 920.

    Article  PubMed  CAS  Google Scholar 

  13. Joyner, C.R., J. M. Reid and J. P. Bond. Reflected ultrasound in the assessment of mitral valve disease. Circulation 27 (1963) 503.

    PubMed  Google Scholar 

  14. Feigenbaum, H., J. A. Waldhausen and L.P. Hyde. Ultrasound diagnosis of pericardial effusion. JAMA 191 (1965) 711.

    PubMed  CAS  Google Scholar 

  15. Leksell, L. Echo-encephalography. I. Detection of intracranial complications following head injury. Acta Chir. Scand. 110 (1955–1956) 301.

    Google Scholar 

  16. Gordon, D. Echo-encephalography, ultrasonic rays in diagnostic radiology. Br. Med. J. 1 (1959) 1500.

    Article  PubMed  CAS  Google Scholar 

  17. deVlieger, M. and H.J. Ridder. Use of echoencephalography. Neurology 9 (1959) 216.

    CAS  Google Scholar 

  18. Ford, R. and J. Ambrose. Echoencephalography: The measurement of the position of mid-line structures in the skull with high frequency pulsed ultrasound. Brain 86 (1963) 189.

    Article  PubMed  CAS  Google Scholar 

  19. Oksala, A. Ultrasound equipment in the examination of the eye and its diseases. Nord. Med. 59 (1958) 721.

    PubMed  CAS  Google Scholar 

  20. Baum, G. and I. Greenwood. The application of ultrasonic locating techniques to ophthalmology. Arch. Ophthalmol. 60 (1958) 263.

    CAS  Google Scholar 

  21. Bracewell, R.N. Strip integration in radio astronomy. Aust. J. Phys. 9 (1956) 198.

    Article  Google Scholar 

  22. Branson, N.J.B. The emission spectrum of the crab nebula. Observatory 85 (1965) 250.

    Google Scholar 

  23. DeRosier, D.J. and A. Klug. Reconstruction of three dimensional structures from electron micrographs. Nature 217 (1968) 130.

    Article  Google Scholar 

  24. Gordon, R., R. Bender and G.T. Herman. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29 (1970) 471.

    Article  PubMed  CAS  Google Scholar 

  25. Rowley, P.D. Quantitative interpretation of three-dimensional weakly refractive phase objects using holographic interferometry. J. Opt. Soc. Am. 59 (1969) 1496.

    Article  Google Scholar 

  26. Berry, M.V. and D.F. Gibbs. The interpretation of optical projections. Proc. R. Soc. London A. 314 (1970) 143.

    Article  Google Scholar 

  27. Cormack, A.M. Early two-dimensional reconstruction and recent topics stemming from it. Science 209 (1980) 1482.

    Article  PubMed  CAS  Google Scholar 

  28. Cormack, A.M. Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34 (1963) 2722.

    Article  Google Scholar 

  29. Cormack, A.M. Representation of a function by its line integrals, with some radiological applications. II. J. Appl. Phys. 35 (1964) 2908.

    Article  Google Scholar 

  30. Oldendorf, W.H. Isolated flying spot detection of radiodensity discontinuities displaying the internal structural pattern of a complex object. IRE Trans. Bio-Med. Electron. BME-8 (1961) 68.

    Article  CAS  Google Scholar 

  31. Kuhl, D.E. and R.Q. Edwards. Image separation radioisotope scanning. Radiology 80 (1963) 653.

    Google Scholar 

  32. Tretiak, O.J., M. Eden and W. Simon. Internal structure from x-ray images. In Proceedings of the Eighth International Conference on Medical and Biological Engineering. IEEE, Chicago, 1969.

    Google Scholar 

  33. Bates, R.H.T. and T.M. Peters. Towards improvements in tomography. N. Z. J. Sci. 14 (1971) 883.

    Google Scholar 

  34. Hounsfield, G.N. Computed medical imaging. Science 210 (1980) 22.

    Article  PubMed  CAS  Google Scholar 

  35. Hounsfield, G.N. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 46 (1973) 1016.

    Article  PubMed  CAS  Google Scholar 

  36. Ambrose, J. Computerized transverse axial scanning (tomography): Part 2. Clinical application. Br. J. Radiol. 46 (1973) 1023.

    Article  PubMed  CAS  Google Scholar 

  37. Brownell, G.L., J. A. Correia and R.G. Zamenhof. Positron instrumentation. In Recent Advances in Nuclear Medicine, vol. 5, ed. J. H. Lawrence and T.F. Budinger. New York, Grune and Stratton, Inc., 1978, pp. 1–49.

    Google Scholar 

  38. Soussaline, F. Emission tomography: Physical aspects. In Computerized Tomography, INSERM Symposium, Bordeaux 1979, ed. J. M. Caille and G. Salamon. Berlin, Springer-Verlag, 1980, pp. 211–217.

    Google Scholar 

  39. Kuhl, D.E. and R.Q. Edwards. Cylindrical and section radioisotope scanning of the liver and brain. Radiology 83 (1964) 926.

    PubMed  CAS  Google Scholar 

  40. Harper, P.V., R. Beck, D. Charleston and K.A. Lathrop. Optimization of a scanning method using Tc99m. Nucleonics 22, No. 1 (1964) 50.

    CAS  Google Scholar 

  41. Kuhl, D.E. and R.Q. Edwards. The Mark III scanner: A compact device for multiple-view and section scanning of the brain. Radiology 96 (1970) 563.

    PubMed  CAS  Google Scholar 

  42. Kuhl, D.E., R.Q. Edwards, A.R. Ricci and M. Reivich. Quantitative section scanning using orthogonal tangent correction. J. Nucl. Med. 14 (1973) 196.

    PubMed  CAS  Google Scholar 

  43. Stoddart, H.F. and H.A. Stoddart. A new development in single gamma transaxial tomography. Union Carbide focussed collimator scanner. IEEE Trans. Nucl. Sci. NS-26 (1979) 2710.

    Article  Google Scholar 

  44. Freedman, G.S. Tomography with a gamma camera. Concise communication. J. Nucl. Med. 11 (1970) 602.

    PubMed  CAS  Google Scholar 

  45. Budinger, T.F., G.T. Gullberg, J. McRae and H.O. Anger. Isotope distribution reconstruction from multiple gamma camera views. J. Nucl. Med. 15 (1974) 480 (abst).

    Google Scholar 

  46. Keyes, J. W., Jr., N. Orlandea, W.J. Heetderks, P.F. Leonard and W.L. Rogers. The Humongotron -A scintillation-camera transaxial tomograph. J. Nucl. Med. 18 (1977) 381.

    PubMed  Google Scholar 

  47. Jaszczak, R., D. Huard, P. Murphy and J. Burdine. Radionuclide emission computed tomography with a scintillation camera. J. Nucl. Med. 17 (1976) 551 (abst).

    Google Scholar 

  48. Hill, T.C., P. Costello, H.F. Gramm, R. Lovett, B.J. McNeil and S. Treves. Early clinical experience with a radionuclide emission computed tomographic brain-imaging system. Radiology 128 (1978) 803.

    PubMed  CAS  Google Scholar 

  49. Murphy, P.H., W.L. Thompson, M.L. Moore and J. A. Burdine. Radionuclide computed tomography of the body using routine radiopharmaceuticals. I. System characterization. J. Nucl. Med. 20 (1979) 102.

    PubMed  CAS  Google Scholar 

  50. Budinger, T.F. Physical attributes of single-photon tomography. J. Nucl. Med. 21 (1980) 579.

    PubMed  CAS  Google Scholar 

  51. Goodwin, P.N. Recent developments in instrumentation for emission computed tomography. Semin. Nucl. Med. X (1980) 322.

    Article  Google Scholar 

  52. Anger, H.O. Multiplane tomographic scanner. In Tomographic Imaging in Nuclear Medicine, Proceedings of Symposium, September 1972, ed. G.S. Freedman. New York, The Society of Nuclear Medicine, 1973, pp. 2–18.

    Google Scholar 

  53. Mathieu, L. and T.F. Budinger. Pinhole digital tomography. In Recent Advances in Nuclear Medicine, Proceedings of the First World Congress of Nuclear Medicine, Tokyo, 1974, pp. 1264–1266.

    Google Scholar 

  54. Vogel, R.A., D. Kirch, M. LeFree and P. Steele. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J. Nucl. Med. 19 (1978) 648.

    PubMed  CAS  Google Scholar 

  55. Koral, K.F., W.L. Rogers and G.F. Knoll. Digital tomographic imaging with time-modulated pseudorandom coded aperture and Anger camera. J. Nucl. Med. 16 (1975) 402.

    PubMed  CAS  Google Scholar 

  56. Chang, W., S.L. Lin and R.E. Henkin. A rotatable quadrant slant hole collimator for tomography (QSH): A stationary scintillation camera based SPECT system. In Single-Photon Emission Computed Tomography and Other Selected Computer Topics. Proceedings of Symposium on Sharing of Computer Programs and Technology in Nuclear Medicine. New York, The Society of Nuclear Medicine, 1980, pp. 81–94.

    Google Scholar 

  57. Williams, J. J and G.F. Knoll. Initial performance of SPRINT: A single photon system for emission tomography. IEEE Trans. Nucl. Sci. NS-26 (1979) 2732.

    Article  Google Scholar 

  58. Barrett, H.H. Fresnel zone plate imaging in nuclear medicine. J. Nucl. Med. 13 (1972) 382.

    PubMed  CAS  Google Scholar 

  59. Myers, M.J., W.I. Keyes and J. R. Mallard. An analysis of tomographic scanning systems. In Medical Radioisotope Scintigraphy 1972, vol. I, Proceedings of Symposium, Monte Carlo 1972. Vienna, IAEA, 1973, pp. 331–345.

    Google Scholar 

  60. Wrenn, F.R., Jr., M.L. Good and P. Handler. The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113 (1951) 525.

    Article  PubMed  CAS  Google Scholar 

  61. Sweet, W.H. The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. N. Engl. J. Med. 245 (1951) 875.

    Article  PubMed  CAS  Google Scholar 

  62. Brownell, G.L and W.H. Sweet. Scanning of positron-emitting isotopes in diagnosis of intracranial and other lesions. Acta Radiol. 46 (1956) 425.

    PubMed  CAS  Google Scholar 

  63. Aronow, S. and G.L. Brownell. An apparatus for brain tumor localization using positron emitting isotopes. IRE International Convention Record Part 9 (1956) 8–16.

    Google Scholar 

  64. Anger, H.O. Sensitivity, resolution and linearity of the scintillation camera. IEEE Trans. Nucl. Sci. NS-13, No. 3 (1966) 380.

    Article  Google Scholar 

  65. Rankowitz, S., J. S. Robertson, W.A. Higinbotham and M.J. Rosenblum. Positron scanner for locating brain tumors. IRE International Convention Record Part 9 (1962) 49–56.

    Google Scholar 

  66. Robertson, J. S. and S.R. Bozzo. Positron scanner for brain tumors. In Proceedings of with IBM Medical Symposium, 1964, pp. 631–645.

    Google Scholar 

  67. Robertson, J. S., R.B. Marr, M. Rosenblum, V. Radeka and Y.L. Yamamoto. 32-Crystal positron transverse section detector. In Tomographic Imaging in Nuclear Medicine, Proceedings of Symposium, September 1972, ed. G.S. Freedman. New York, The Society of Nuclear Medicine, 1973, pp. 142–153.

    Google Scholar 

  68. Thompson, C.J., Y.L. Yamamoto and E. Meyer. A positron imaging system for the measurement of regional cerebral blood flow. Application of Optical Instrumentation in Medicine V, Proc. Soc. Photo-Opt. Instr. Eng. 96 (1976) 263–268.

    Google Scholar 

  69. Yamamoto, Y.L., C.J. Thompson, E. Meyer, J. S. Robertson and W. Feindel. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr. J. Comput. Assist. Tomogr. 1 (1977) 43.

    Article  PubMed  CAS  Google Scholar 

  70. Carroll, L.R. Design and performance characteristics of a production model positron imaging system. IEEE Trans. Nucl. Sci. NS-25 (1978) 606.

    Article  Google Scholar 

  71. Brownell, G.L., C.A. Burnham, S. Wilensky, S. Aronow, H. Kazemi and D. Streider. New developments in positron scintigraphy and the application of cyclotron-produced positron emitters. In Medical Radioisotope Scintigraphy, vol. I, Proceedings of Symposium, Salzburg 1968. Vienna, IAEA, 1969, pp. 163–176.

    Google Scholar 

  72. Brownell, G.L., C.A. Burnham, B. Hoop and H. Kazemi. Positron scintigraphy with short-lived cyclotron-produced radiopharmaceuticals and a multicrystal positron camera. In Medical Radioisotope Scintigraphy, Proceedings of Symposium. Vienna, IAEA, 1973, p. 313.

    Google Scholar 

  73. Brownell, G.L and C.A. Burnham. MGH positron camera. In Tomographic Imaging in Nuclear Medicine, Proceedings of Symposium, September 1972, ed. G.S. Freedman. New York, The Society of Nuclear Medicine, 1973, pp. 154–164.

    Google Scholar 

  74. Wilensky, S., A.B. Ashare, S.M. Pizer, B. Hoop and G.L. Brownell. Computer processing and display of positron scintigrams and dynamic function curves. In Medical Radioisotope Scintigraphy, vol. I, Proceedings of Symposium, Salzburg 1968. Vienna, IAEA, 1969, pp. 815–827.

    Google Scholar 

  75. Ter-Pogossian, M.M., M.E. Phelps, E.J. Hoffman and N.A. Mullani. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114 (1975) 89.

    PubMed  CAS  Google Scholar 

  76. Derenzo, S.E., T.F. Budinger, R.H. Huesman, J. L. Cahoon and T. Vuletich. Imaging properties of a positron tomograph with 280 BGO crystals. IEEE Trans. Nucl. Sci. NS-28 (1981) 81.

    Article  Google Scholar 

  77. Brooks, R.A., V.J. Sank, G. DiChiro, W.S. Friauf and S.B. Leighton. Design of a high resolution positron emission tomograph. The Neuro-PET. J. Comput. Assist. Tomogr. 4 (1980) 5.

    Article  CAS  Google Scholar 

  78. Tanaka, E., N. Nohara, M. Yamamoto, T. Tomitani, H. Murayama, K. Ishimatsu and K. Takami. “Positology” -The search for suitable detector arrangements for a positron ECT with continuous rotation. IEEE Trans. Nucl. Sci. NS-26 (1979) 2728.

    Article  Google Scholar 

  79. Böhm, Chr., L. Eriksson, M. Bergstrom, J. Litton, R. Sundman and M. Singh. A computer assisted ring-detector positron camera system for reconstruction tomography of the brain. IEEE Trans. Nucl. Sci. NS-25 (1978) 624.

    Article  Google Scholar 

  80. Kanno, I., K. Uemura, S. Miura and Y. Miura. HEADTOME: A hybrid emission tomograph for single photon and positron emission imaging of the brain. J. Comput. Assist. Tomogr. 5 (1981) 216.

    Article  PubMed  CAS  Google Scholar 

  81. Yano, Y. and H.O. Anger. Visualization of heart and kidneys in animals with ultrashort-lived 82Rb and the positron scintillation camera. J. Nucl. Med. 9 (1968) 412.

    Google Scholar 

  82. Myers, W.G. 11C-Acetylene. J. Nucl. Med. 13 (1972) 699.

    PubMed  CAS  Google Scholar 

  83. Grant. P.M., B.R. Erdal and H.A. O’Brien, Jr. A 82Sr-82Rb isotope generator for use in nuclear medicine. J. Nucl. Med. 16 (1975) 300.

    CAS  Google Scholar 

  84. Budinger, T.F., Y. Yano and B. Hoop. A comparison of 82Rb+ and 13NH3 for nyocardial positron scintigraphy. J. Nucl. Med. 16 (1975) 429.

    PubMed  CAS  Google Scholar 

  85. Clark, J. C. and P.D. Buckingham. The preparation and storage of carbon-11 labelled gases for clinical use. Int. J. Appl. Radiât. Isot. 22 (1971) 639.

    Article  PubMed  CAS  Google Scholar 

  86. Wolf, A.P. and CS. Redvanly. Carbon-11 and radiopharmaceuticals. Int. J. Appl. Radiât. Isot. 28 (1977) 29.

    Article  PubMed  CAS  Google Scholar 

  87. Welch, M.J. and S. Wagner. Preparation of positron-emitting radiopharmaceuticals. In Recent Advances in Nuclear Medicine, vol. 5, ed. J. H. Lawrence and T.F. Budinger. New York, Grune and Stratton, Inc., 1978, pp. 51–69.

    Google Scholar 

  88. Lifton, J. F. and M.J. Welch. Preparation of glucose labeled with 20-minute half-lived carbon-11. Radiât. Res. 45 (1971) 35.

    Article  PubMed  CAS  Google Scholar 

  89. Ter-Pogossian, M.M., J. O. Eichling, D.O. Davis and M.J. Welch. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J. Clin. Invest. 49 (1970) 381.

    Article  PubMed  CAS  Google Scholar 

  90. Ter-Pogossian, M.M., J. O. Eichling, D.O. Davis, M.J. Welch and J. M. Metzger. The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen-15. Radiology 93 (1969) 31.

    PubMed  CAS  Google Scholar 

  91. Subramanyam, R., N.M. Alpert, B. Hoop, Jr., G.L. Brownell and J. M. Taveras. A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15o, and C15o2 J. Nucl. Med. 19 (1978) 48.

    PubMed  CAS  Google Scholar 

  92. Gelbard, A.S., L.P. Clarke and J. S. Laughlin. Enzymatic synthesis and use of l3N-labeled L-asparagine for myocardial imaging. J. Nucl. Med. 15 (1974) 1223.

    PubMed  CAS  Google Scholar 

  93. Gelbard, A.S., L.P. Clarke, J. M. McDonald, W.G. Monahan, R.S. Tilbury, T.Y.T. Kuo and J. S. Laughlin. Enzymatic synthesis and organ distribution studies with 13N-labeled L-glutamine and L-glutamic acid. Radiology 116 (1975) 127.

    CAS  Google Scholar 

  94. Ido, T., C.-N. Wan, J. S. Fowler and A.P. Wolf. Fluorination with F2. A convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J. Org. Chem. 42 (1977) 2341.

    Article  CAS  Google Scholar 

  95. Gallagher, B.M., A. Ansari, H. Atkins, V. Casella, D.R. Christman, J. S. Fowler, T. Ido, R.R. MacGregor, P. Som, C.N. Wan, A.P. Wolf, D.E. Kuhl and M. Reivich. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: Tissue distribution and imaging studies in animals. J. Nucl. Med. 18 (1977) 990.

    PubMed  CAS  Google Scholar 

  96. Receptor-Binding Radiotracers vol. 1 and 2, ed. W.C. Eckelman. Boca Raton, CRC Press, 1982.

    Google Scholar 

  97. Comar, D., M. Maziere and C. Crouzel. Synthesis and metabolism of 11C-chlorpromazine methiodide. In Radiopharmaceuticals and Labelled Compounds, vol. 1, Proceedings of Symposium, Copenhagen 1973. Vienna, IAEA, 1973, pp. 461–469.

    Google Scholar 

  98. Comar, D., M. Maziere, J. M. Godet, G. Berger and F. Soussaline. Visualization of 11C-flunitrazepam displacement in the brain of the live baboon. Nature (London) 280 (1979) 329.

    Article  CAS  Google Scholar 

  99. Haschek, E. and O.T. Lindenthal. A contribution to the practical use of the photography according to Röntgen. Wien. Klin. Wschr. 9 (1896) 63.

    Google Scholar 

  100. Castellanos, A., R. Pereiras and A. Garcia. La angiocardiografia radioopaca. Arch. Soc. Estud. Clin. (Habana) 31 (1937) 523.

    Google Scholar 

  101. Robb, G.P. and I. Steinberg. Visualization of the chambers of the heart, the pulmonary circulation, and the great blood vessels in man. AJR 41 (1939) 1.

    Google Scholar 

  102. Sashin, D., R.L. Goldman, P. Zanetti and E.R. Heinz. Electronic radiography in stereotaxic thrombosis of intracranial aneurysms and catheter embolization of cerebral arteriovenous malformations. Radiology 105 (1972) 359.

    PubMed  CAS  Google Scholar 

  103. Jacobson, B. and R.S. Mackay. Radiological contrast enhancing methods. Adv. Biol. Med. Phys. 6 (1958) 201.

    PubMed  CAS  Google Scholar 

  104. Kelcz, F. and C.A. Mistretta. Absorption-edge fluoroscopy using a three-spectrum technique. Med. Phys. 3 (1976) 159.

    Article  PubMed  CAS  Google Scholar 

  105. Houk, T.L., R.A. Kruger, C.A. Mistretta, S.J. Riederer, C.-G. Shaw, J. C. Lancaster and D.C. Flemming. Real time digital K-edge subtraction fluoroscopy. Invest. Radiol. 14 (1979) 270.

    Article  PubMed  CAS  Google Scholar 

  106. Kruger, R.A., C.A. Mistretta, T.L. Houk, S.J. Riederer, C.G. Shaw, M.M. Goodsitt, A.B. Crummy, W. Zwiebel, J. C. Lancaster, G.G. Rowe and D. Flemming. Computerized fluoroscopy in real time for noninvasive imaging of the cardiovascular system. Preliminary studies. Radiology 130 (1979) 49.

    CAS  Google Scholar 

  107. Heintzen, P.H., R. Brennecke, J. H. Bürsch, P. Lange, V. Malerezyk, K. Moldenhauer and D. Onnasch. Automated video-angiocardiographic image analysis. In Computers in Cardiology, Proceedings of Conference, October 1974. Long Beach, IEEE Inc., 1974, pp. 67–75.

    Google Scholar 

  108. Brennecke, R., T.K. Brown, J. H. Bürsch and P.H. Heintzen. Digital processing of video-angiocardiographic image series using a minicomputer. In Computers in Cardiology, Proceedings of Conference, October 1976. Long Beach, IEEE Inc., 1976, pp. 255–260.

    Google Scholar 

  109. Brennecke, R., T.K. Brown, J. H. Bürsch and P.H. Heintzen. Computerized video-image preprocessing with application to cardioangiographic roentgen image series. In Digital Image Processing, ed. H.H. Nagel. New York, Springer-Verlag, 1977, pp. 244–262.

    Google Scholar 

  110. Höhne, K.H., G. Nicolae, G. Pfeiffer, W.-R. Dix, W. Ebenritter, D. Novak, M. Böhm, B. Sonne and E. Bücheler. An interactive system for clinical application of angiodensitometry. Informatik Fachb. 8, Digitale Bildverarbeitung. Berlin, Springer-Verlag, 1977, pp. 234–243.

    Google Scholar 

  111. Nudelman, S., M.P. Capp, H.D. Fisher, M.M. Frost and H. Roehrig. Photoelectronic imaging for diagnostic radiology and the digital computer. 4th European Electro-optics Conference, Proc. Soc. Photo-Opt. Instr. Eng. 164 (1978) 138.

    Google Scholar 

  112. Ovitt, T.W., M.P. Capp, H.D. Fisher, M.M. Frost, J. L. Lebel, S. Nudelman and H. Roehrig. The development of a digital video subtraction system for intravenous angiography. In Noninvasive Cardiovascular Measurements. Bellingham, Society of Photo-Optical Instrumentation Engineers, 1978, pp. 61–65.

    Google Scholar 

  113. Brody, W.R., A. Macovski, L. Lehmann, F.A. DiBianca, D. Volz and L.S. Edelheit. Intravenous angiography using scanned projection radiography: Preliminary investigation of a new method. Invest. Radiol. 15 (1980) 220.

    Article  PubMed  CAS  Google Scholar 

  114. Meaney, T.F., M.A. Weinstein, P. Buonocore, W. Pavlicek, G.P. Borkowski, J. H. Gallagher, B. Sufka and W.J. Maclntyre. Digital subtraction angiography of the human cardiovascular system. Application of Optical Instrumentation in Medicine VIII, Proc. Soc. Photo-Opt. Instr. Eng. 233 (1980) 272–278.

    Google Scholar 

  115. Mistretta, C.A., A.B. Crummy and CM. Strother. Digital angiography: A perspective. Radiology 139 (1981) 273.

    PubMed  CAS  Google Scholar 

  116. Bloch, F. The principle of nuclear induction. Science 118 (1953) 425.

    Article  PubMed  CAS  Google Scholar 

  117. Purcell, E.M. Research in nuclear magnetism. Science 118 (1953) 431.

    Article  PubMed  CAS  Google Scholar 

  118. Burt, C.T., T. Glonek and M. Barany. Analysis of living tissue by phosphorus-31 magnetic resonance. Science 195 (1977) 145.

    Article  PubMed  CAS  Google Scholar 

  119. Marx, J. L. NMR research: Analysis of living cells and organs. Science 202 (1978) 958.

    Article  PubMed  CAS  Google Scholar 

  120. Ross, B.D., G.K. Radda, D.G. Gadian, G. Rocker, M. Esiri and J. Falconer-Smith. Examination of a case of suspected McArdle’s syndrome by 31p nuclear magnetic resonance. N. Engl. J. Med. 304 (1981) 1338.

    Article  PubMed  CAS  Google Scholar 

  121. Damadian, R. Tumor detection by nuclear magnetic resonance. Science 171 (1971) 1151.

    Article  PubMed  CAS  Google Scholar 

  122. Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242 (1973) 190.

    Article  CAS  Google Scholar 

  123. Gabi Hard, R. Measurement of relaxation time 12 in the presence of an inhomogeneous magnetic field. CR. Acad. Sci. Paris 232 (1951) 1551.

    Google Scholar 

  124. Hinshaw, W.S. Spin mapping: The application of moving gradients to NMR. Phys. Lett. 48A (1974) 87.

    Google Scholar 

  125. Damadian, R., L. Minkoff, M. Goldsmith, M. Stanford and J. Koutcher. Tumor imaging in a live animal by field focusing NMR (FONAR). Physiol. Chem. Phys. 8 (1976) 61.

    PubMed  CAS  Google Scholar 

  126. Garroway, A.N., P.K. Grannell and P. Mansfield. Image formation in NMR by a selective irradiative process. J. Phys. C: Solid State Phys. 7 (1974) L457.

    Article  CAS  Google Scholar 

  127. Crooks, L.E. Selective irradiation line scan techniques for NMR imaging. IEEE Trans. Nucl. Sci. NS-27 (1980) 1239.

    Article  Google Scholar 

  128. Andrew, E.R., P.A. Bottomley, W.S. Hinshaw, G.N. Holland, W.S. Moore and C. Simaroj. NMR images by the multiple sensitive point method: Application to larger biological systems. Phys. Med. Biol. 22 (1977) 971.

    Article  PubMed  CAS  Google Scholar 

  129. Lauterbur, P.C., C.S. Dulcey, C.M. Lai, M.A. Feiler, W.V. House, D.M. Kramer, C.N. Chen and R. Dias. Magnetic resonance zeugmatography. In Proceedings of XVIII Ampere Congress, Nottingham, ed. P.S. Allen, E.R. Andrew and C.A. Bates. Amsterdam, North-Holland, 1974, pp. 27–29.

    Google Scholar 

  130. Brunner, P. and R.R. Ernst. Sensitivity and performance time in NMR imaging. J. Magn. Reson. 33 (1979) 83.

    CAS  Google Scholar 

  131. Kumar, A., D. Welti and R.R. Ernst. NMR Fourier zeugmatography. J. Magn. Reson. 18 (1975) 69.

    CAS  Google Scholar 

  132. Edelstein, W.A., J. M.S. Hutchison, G. Johnson and T. Redpath. Spin warp NMR imaging and applications to human whole-body imaging. Phys. Med. Biol. 25 (1980) 751.

    Article  PubMed  CAS  Google Scholar 

  133. Mansfield, P. and A.A. Maudsley. Planar spin imaging by NMR. J. Phys. C: Solid State Phys. 9 (1976) L409.

    Article  CAS  Google Scholar 

  134. Mansfield, P. Multi-planar image formation using NMR spin echoes. J. Phys. C: Solid State Phys. 10 (1977) L55.

    Article  CAS  Google Scholar 

  135. Hoult, D.I. Rotating frame zeugmatography. J. Magn. Reson. 33 (1979) 183.

    CAS  Google Scholar 

  136. Lai, C.-M. and P.C. Lauterbur. A gradient control device for complete three-dimensional nuclear magnetic resonance zeugmatographic imaging. J. Phys. E: Sci. Instrum. 13 (1980) 747.

    Article  CAS  Google Scholar 

  137. Ordidge, R.J., P. Mansfield and R.E. Coupland. Rapid biomedical imaging by NMR. Br. J. Radiol. 54 (1981) 850.

    Article  PubMed  CAS  Google Scholar 

  138. Hutchison, J. M.S., J. R. Mallard and CC Göll. In vivo imaging of body structures using proton resonance, Nottingham. In Proceedings of XVIII Ampere Congress, Nottingham, ed. P.S. Allen, E.R. Andrew, and C.A. Bates. Amsterdam, North-Holland, 1974, pp. 283–284.

    Google Scholar 

  139. Hinshaw, W.S. Image formation by nuclear magnetic resonance: The sensitive-point method. J. Appl. Phys. 47 (1976) 3709.

    Article  Google Scholar 

  140. Hinshaw, W.S., E.R. Andrew, P.A. Bottomley, G.N. Holland, W.S. Moore and B.S. Worthington. Display of cross sectional anatomy by nuclear magnetic resonance imaging. Br. J. Radiol. 51 (1978) 273.

    Article  PubMed  CAS  Google Scholar 

  141. Damadian, R., M. Goldsmith and L. Minkoff. NMR in cancer: XVI. FONAR image of the live human body. Physiol. Chem. Phys. 9 (1977) 97.

    PubMed  CAS  Google Scholar 

  142. Damadian, R., M. Goldsmith and L. Minkoff. NMR in cancer: XX. FONAR scans of patients with cancer. Physiol. Chem. Phys. 10 (1978) 285.

    PubMed  CAS  Google Scholar 

  143. Hinshaw, U.S., P.A. Bottomley and G.N. Holland. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270 (1977) 722.

    Article  PubMed  CAS  Google Scholar 

  144. Reported in New Scientist 80 (1978) 588.

    Google Scholar 

  145. Mallard, J., J. M.S. Hutchison, H.A. Edelstein, CR. Ling, M.A. Foster and G. Johnson. In vivo NMR imaging in medicine: The Aberdeen approach, both physical and biological. Philos. Trans. R. Soc. London. B. 289 (1980) 519.

    Article  CAS  Google Scholar 

  146. Brownell, G.L., T.F. Budinger, P.C. Lauterbur and P.L. McGeer. Positron tomography and nuclear magnetic resonance imaging. Science 215 (1982) 619.

    Article  PubMed  CAS  Google Scholar 

  147. Holmes, J. H. Diagnostic ultrasound during the early years of A.I.U.M. J. Clin. Ultrasound 8 (1980) 299.

    Article  PubMed  CAS  Google Scholar 

  148. Hendee, W.R. The Physical Principles of Computed Tomography. Boston, Little, Brown and Company, 1983.

    Google Scholar 

  149. Digital Subtraction Arteriography: An Application of Computerized Fluoroscopy, ed. C.A. Mistretta, A.B. Crummy, CM. Strother, J. F. Sackett. Chicago, Year Book Publishers, 1982.

    Google Scholar 

  150. Imaging for Medicine, vol. 1, Nuclear Medicine, Ultrasonics, and Thermography, ed. S. Nudelman, D.D. Patton. New York, Plenum Press, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Taube, R.A., Adelstein, S.J. (1987). A Short History of Modern Medical Imaging. In: Guzzardi, R. (eds) Physics and Engineering of Medical Imaging. NATO ASI Series, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3537-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3537-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8081-1

  • Online ISBN: 978-94-009-3537-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics