Skip to main content

Relations between Atomic Arrangement and Electronic Structure in Liquid Metals and Alloys

  • Chapter
Amorphous and Liquid Materials

Part of the book series: NATO ASI Series ((NSSE,volume 118))

  • 185 Accesses

Abstract

In the beginning was the diffraction model. It establishes a clearcut relation between structure and electronic properties, and it works well for N.F.E. metals. For elements reliable experimental structure factors are known. In monovalent metals inaccuracies arise from the near-coincidence of the steep slope of the structure factor and the node in the pseudopotential in the important region of q just below 2kF. Yet accuracies within 10%, typically, can be obtained in calculations of the resistivity, ρ, and the thermopower, Q. In alloys difficulties arise because partial structure factors are usually not known from experiment and one has then to rely upon HSPY (hard sphere Percus-Yevick) structure factors, which obviously involve two serious approximations: that of the Percus-Yevick approximation and that of hard-sphere potentials. But by reasonable choice of structural parameters in the HSPY expressions agreement within, say, 20% can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hafner J. and Kahl G., J.Phys.F: Met.Phys.14 (1984) 2259–2278.

    Article  CAS  Google Scholar 

  2. Hafner J. Z.Phys.B22 (1975) 351–357, ibid. B24 (1976) 41–52.

    Google Scholar 

  3. Huijben M. J., Van der Lugt W., Reimert W.A.M., de. Hosson J.Th.M., and Van Dijk C., Physica 97B. (1979) 338–364.

    Google Scholar 

  4. Ichikawa K., Granstaff S.M.Jr. and Thompson J.C., J.Chem.Phys.61 (1974) 4059.

    Article  CAS  Google Scholar 

  5. Neale F.E. and Cusack N.E., J.Phys.F: Metal Phys.12 (1982) 2839–50.

    Article  CAS  Google Scholar 

  6. Feitsma P.D., Hennephof J. and Van der Lugt W., Phys.Rev.32 (1974). 295–297.

    CAS  Google Scholar 

  7. Kim M.G. and Letcher S.V., Chem.Phys.55 (1971) 1164–1170.

    CAS  Google Scholar 

  8. Lai S.K. and Wang S., Phys.Lett.85A (1981) 239.

    CAS  Google Scholar 

  9. Pyykkö P. and Desclaux J.-P., Acc.Chem.Res.12 (1979) 276.

    Article  Google Scholar 

  10. Keeton S.C. and Loucks T.L., Phys.Rev.152 (1966) 548–555.

    Article  Google Scholar 

  11. Mott N.F., Phil.Mag.13 (1966) 989–1014.

    Article  CAS  Google Scholar 

  12. Evans. R., Greenwood D.A., Lloyd P. and Ziman J.M., Phys.Lett.30A (1969) 313.

    Google Scholar 

  13. Chan T. and Ballentine L.E., Can.J.Phys.50 (1972) 814.

    Google Scholar 

  14. Itami T. and Shimoji M., Phil.Mag.25 (1972) 229.

    Article  Google Scholar 

  15. Evans R., J.Phys.C: Metal Phys.Suppl.No.2 (1970) 137.

    Google Scholar 

  16. Fielder R.L., Adv.Phys.16 (1966) 681.

    Article  Google Scholar 

  17. Itami T., Wada T. and Shimoji M., J.Phys.F: Met.Phys.12 (1982). 1959–1970.

    Article  Google Scholar 

  18. Itami T., Takahashi N. and Shimoji M., J.Phys.F: Met.phys.13 (1983) 1225.

    Article  Google Scholar 

  19. Itami T., Takahashi S. and Shimoji M., J.Phys.F: Met.Phys.14 (1984) 427.

    Article  Google Scholar 

  20. Sato T., Itami T. and Shimoji M, J.Phys.Soc.Japan 51 (1982) 2493.

    Article  Google Scholar 

  21. Ishiguro T., Takeda S. and Tamaki S., J.Phys.F: Met.Phys.12 (1982) 845–856.

    Article  CAS  Google Scholar 

  22. Tamaki S., Waseda Y. and Tsuchiya Y., J.Phys.F: Met.Phys.12 (1982) 1101–1109.

    Article  CAS  Google Scholar 

  23. Wells A.F., Structural Inorganic Chemistry, Oxford, at the Clarendon Press, 1962.

    Google Scholar 

  24. Mattheiss L.F. and Warren W.W. Jr., Phys.Rev.B 16 (1977) 624.

    Article  CAS  Google Scholar 

  25. Van der Marel C., Thesis, Groningen 1981.

    Google Scholar 

  26. Van der Marel C. in: Liquid and Amorphous Metals, ed. E. Lüscher and H. Coufal, Sijthoff & Noordhoff, 1980, p. 627.

    Google Scholar 

  27. Feitsma P.D., Lee T. and Van der Lugt W., Physica 93B (1978) 52–58.

    Google Scholar 

  28. Van der Marel C. and Van der Lugt W., Physica 112B (1982) 365–368.

    Google Scholar 

  29. Van der Marel C. and Van der Lugt W., J.Phys.F: Met.Phys.10 (1980) 1177.

    Article  Google Scholar 

  30. Ruppersberg H., Saar J., Speicher W. and Heitjans P., J.Phys.41 (1980) C8–595.

    Google Scholar 

  31. Van der Marel C., Brandenburg E.P. and Van der Lugt W., J.Phys.F: Met.Phys.8 (1978) L273.

    Article  Google Scholar 

  32. Zintl E. and Woltersdorf G., Z.Elektrochem.41 (1935) 876.

    CAS  Google Scholar 

  33. Zintl E. and Brauer G., Z.Phys.Chem.Abt.B 20. (1933) 245.

    Google Scholar 

  34. Christensen N.E., Phys.Rev.B 32 (1985) 207–228.

    Article  CAS  Google Scholar 

  35. Kitajima M. and Shimoji M., in: Liquid Metals, Inst.Phys.Conf.Ser. no. 30 (1977) 226.

    Google Scholar 

  36. Meijer J.A., Geertsma W. and Van der Lugt W., J.Phys.F 15 (1985) 899–910.

    Article  CAS  Google Scholar 

  37. Itami T. and Meijer J.A., unpublished result.

    Google Scholar 

  38. Ruppersberg H. and Egger H., J.Chem.Phys.63 (1975) 4095.

    Article  CAS  Google Scholar 

  39. Ruppersberg H. and Reiter H., J.Phys.F 12 (1982) 1311.

    Article  CAS  Google Scholar 

  40. Franz J.R., Brouers, F. and Holzhey C., J.Phys.F: Met.Phys.12 (1982) 2611.

    Article  CAS  Google Scholar 

  41. Franz J.R., Brouers F. and Holzhey C., J.Phys.F: Met.Phys.10 (1980) 235.

    Article  CAS  Google Scholar 

  42. Holzhey C., Brouers F. and Franz J.R., J.Phys.F: Met.Phys.11 (1981) 1047.

    Article  CAS  Google Scholar 

  43. Holzhey C., Brouers F. Franz J.R. and Schirmacher W., J.Phys.F: Met.Phys.12 (1982) 2601.

    Article  CAS  Google Scholar 

  44. Schmutzler R.W., Hoshino H., Fischer R. and Hensel F., Ber.Bunsenges. Phys.Chem.80 (1976) 107.

    CAS  Google Scholar 

  45. Nicoloso N., Schmutzler R.W. and Hensel F., Ber.Bunsenges. 82 (1978) 621.

    CAS  Google Scholar 

  46. Robertson J., Phys.Rev. B 27 (1983) 6322.

    Article  CAS  Google Scholar 

  47. Meijer J.A. and Van der Lugt W., to be published in J.Phys.F: Met.Phys.

    Google Scholar 

  48. Hart R.M., Robin M.B. and Kuebler N.A., J.Chem.Phys.42 (1965) 3631–3638.

    Article  CAS  Google Scholar 

  49. Geertsma W., Dijkstra J. and Van der Lugt W., J.Phys.F 14 (1984). 1833–1845.

    Article  CAS  Google Scholar 

  50. Dijkstra J. and Geertsma W., J. Non-Cryst. Solids 69 (1985) 317–324.

    Article  CAS  Google Scholar 

  51. Geertsma W., J.Phys.C 18 (1985) 2461.

    Article  CAS  Google Scholar 

  52. Springelkamp F., De Groot R.A., Geertsma W., Van der Lugt W. and Mueller F.M., Phys.Rev. B 32 (1985). 15 August issue.

    Article  Google Scholar 

  53. Alblas B.P., Van der Lugt W., Dijkstra J. and Van Dijk C., J.Phys.F 14 (1984) 1995–2006.

    Article  CAS  Google Scholar 

  54. Van der Lugt W. and Geertsma W., J Non-Cryst. Solids 61&62 (1984) 187–200.

    Google Scholar 

  55. Redslob H., Steinleitner G. and Freyland W., Z.Naturforsch. 27a (1982) 587.

    Google Scholar 

  56. Lamparter P., Martin W., Steeb S. and Freyland W. Z.Naturforsch. 38a (1982) 329.

    Google Scholar 

  57. Dupree R., Kirby D.J. and Freyland W., Phil.Mag. B 46 (1982) 595.

    Article  CAS  Google Scholar 

  58. Copestake A.P. and Evans R., J.Phys.C 15 (1982) 4561.

    Article  Google Scholar 

  59. Copestake A.P., Evans R., Ruppersberg H. and Schirmacher W., J.Phys.F: Met.Phys. 13 (1983) 1993.

    Article  CAS  Google Scholar 

  60. Hafner J., Pasturel A. and Hicter P., J.Phys.F: Met.Phys.14 (1984) 1137–1156.

    Article  CAS  Google Scholar 

  61. Hafner J., Pasturel A. and Hicter P. J.Phys.F:Met.Phys.l4 (1984) 2279–2295.

    Article  Google Scholar 

  62. Tamaki S., Ross R.G., Cusack N.E. and Endo H., The properties of Liquid Metals, ed. S. Takeuchi, Taylor and Francis. Ltd. (1973) 289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

van der Lugt, W., Meijer, J.A. (1987). Relations between Atomic Arrangement and Electronic Structure in Liquid Metals and Alloys. In: Lüscher, E., Fritsch, G., Jacucci, G. (eds) Amorphous and Liquid Materials. NATO ASI Series, vol 118. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3505-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3505-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8066-8

  • Online ISBN: 978-94-009-3505-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics