Skip to main content

Composite Materials for Use in Orthopaedic Applications: Fracture Behavior of Acrylic Bone Cement Reinforced with High Toughness Organic Fibers

  • Chapter
  • 334 Accesses

Abstract

A study of the fracture behavior of poly(methyl methacrylate) bone cement reinforced with short ultra-high strength polyethylene fibers is presented. The flexural strength and modulus are apparently not improved by the incorporation of polyethylene fibers in the PMMA cement, probably because of the presence of voids, the poor mixing practice and the weakness of the fiber/matrix inter facial bond. Linear elastic and nonlinear elastic fracture mechanics techniques are used to assess the ultimate behavior of the unreinforced and reinforced cements. Both techniques yield similar trends for the fracture toughness, indicating that a significant reinforcing effect is obtained at fiber content as low as 1% by weight, but beyond that concentration a plateau value is reached and the fracture toughness becomes insensitive to fiber content. The present polyethylene/PMMA composite presents several advantages as compared to other composite cements, but overall the mechanical performance of this system resembles that of Kevlar 29/PMMA cement, with a few differences. Scanning electron microscopy reveals characteristic m icromechan isms of energy absorption in PE/ PMMA bone cement, including plastic bending and kinking of the PE fibers, pull-out and possibly some splitting. More fundamental modeling treatments are needed to obtain a quantitative estimate of such m icromechan isms, within the framework of the fracture behavior of short fiber composites with weakly bonded constituents as well as to optimize the various mechanical properties with respect to structural parameters and cement preparation techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charnley J., Anchorage of the femoral head prosthesis to the shaft of the femur, J. Bone Jt Surg., 42B (1960), 28.

    Google Scholar 

  2. Charnley J., Acrylic cement in orthopaedic surgery, J. Bone Jt Surg., 46B (1964), 518.

    CAS  Google Scholar 

  3. Ray A. K., Romine S. J., and Pankovich A. M., Stabilization of pathogenic fractures with acrylic cement, Clin. Orth. (1974), 182.

    Google Scholar 

  4. Pourdeyhimi B., Robinson H. H., Schwartz, R and Wagner, H. D., Fracture toughness of Kevlar 29/poly(methyl methacrylate) composite materials for surgical implantations, Ann. Biomed. Engng, 14 (1986), 277.

    Article  CAS  Google Scholar 

  5. Orthopaedic Knowledge Update I, American Academy of Orthopaedic Surgery, Chicago, I11., 1984, Chapter 33.

    Google Scholar 

  6. Rijke A. M., and Rieger M. R., Porous acrylic cement, J. Biomed. Mater. Res., 11 (1977), 373.

    Article  CAS  Google Scholar 

  7. Saha S., and Kraay M. J., Improved strength characteristics of poly(methyl methacrylate) beam specimens reinforced with metal wires, J. Biomed. Mater. Res., 13 (1979), 443.

    Article  CAS  Google Scholar 

  8. Pilliar R. M., Bratina W. J., and Blackwell R. A., Mechanical properties of carbon fiber reinforced poly(methyl methacrylate) for surgical implant applications, ASTM Special Technical Publication STP 636, 1977, p. 206.

    Google Scholar 

  9. Knoell A., Maxwell H., and Bechtol C., Graphite fibre reinforced bone cement, Ann. Biomed. Engng, 3 (1975), 225.

    Article  CAS  Google Scholar 

  10. Wright T. M., and Trent P. S., Mechanical properties of aramid fibre- reinforced acrylic bone cement, J. Mater. Sci. Lett., 14 (1979), 503.

    CAS  Google Scholar 

  11. Pourdeyhimi B., Wagner H. D., and Schwartz P., A comparison of mechanical properties of discontinuous Kevlar 29 fibre reinforced bone and dental cements, J. Mater. Sci., 21 (1986), 4468.

    Article  CAS  Google Scholar 

  12. McKenna G. B., Bradley G. W, Dunn H. K., and Statton W. O., Degradation resistance of some candidate composite biomaterials, J Biomed. Mater. Res., 13 (1979), 783.

    Article  CAS  Google Scholar 

  13. King R. N., McKenna G. B., and Statton W. O., Novel uses of fibers as tendons and bones, J. appl. Polym. Sci.: appl. Polym. Symp., 31 (1977), 335.

    CAS  Google Scholar 

  14. Huxter R. H., Jaeger S. H., and Hunter J. M., Trans. 23rd Ann. Orthop. Res. Soc., 2 (1977), 108.

    Google Scholar 

  15. Smook J., Hamersma W., and Penningss A. J., The fracture process of ultrahigh strength polyethylene fibres, J. Mater. Sci., 19 (1984), 1359.

    Google Scholar 

  16. Hertzberg R. W., Deformation and Fracture Mechanics of Engineering Materials, New York, John Wiley, 1976.

    Google Scholar 

  17. Begley J. A., and Landes J. D., The J-integral as a fracture criterion, ASTM Special Technical Publication STP 514, Part II, 1972, p. 1.

    Google Scholar 

  18. Landes J. D., and Begley J. A., Recent developments in Jlc testing, ASTM Special Technical Publication STP 632, 1977, p. 57.

    Google Scholar 

  19. Bucci R. J., Paris P. C., Landes J. D., and Rice J. R., J-integral estimation procedures, ASTM Special Technical Publication STP 514, Part II, 1972, p. 40.

    Google Scholar 

  20. Agarwal B. D., Patro B. S., and Kumar P., J-integral as fracture criterion for short fibre composites: an experimental approach, Engng Fract. Mech., 19 (1984), 675.

    Article  CAS  Google Scholar 

  21. Wagner H. D., Elastic response of fibrous composite materials with weak bonding, C. R. Acad. Sci. Paris, t.303, Serie II, no. 14 (1986), 1283.

    Google Scholar 

  22. Robinson R. P., Wright T. M., and Burstein, A. H., Mechanical properties of poly(methyl methacrylate) bone cements, J. Biomed. Mater. Res., 15 (1981), 203.

    Article  CAS  Google Scholar 

  23. Modern Plastics Encyclopedia, 60, 10A, New York, McGraw-Hill, 1983-1984, p. 592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers LTD

About this chapter

Cite this chapter

Wagner, H.D., Pourdeyhimi, B. (1987). Composite Materials for Use in Orthopaedic Applications: Fracture Behavior of Acrylic Bone Cement Reinforced with High Toughness Organic Fibers. In: Marshall, I.H. (eds) Composite Structures 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3457-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3457-3_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8048-4

  • Online ISBN: 978-94-009-3457-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics