Skip to main content

Metallography of High Temperature Fatigue

  • Chapter
High Temperature Fatigue

Summary

The vast majority of metallographic studies of fatigue have been concerned with room-temperature cycling and, generally, with elementary materials such as pure metals and simple alloys. In this chapter, using ambient temperature fatigue as a baseline, recent developments in the observation and understanding of high temperature fatigue are explored, up to and including crack initiation. Both the effects of microstructure on cyclic response and the influence of cyclic strain on microstructure are examined, to highlight the requirements for improved fatigue resistance. Emphasis has been placed on realistic, but complex, cycles where interactions between fatigue and creep are possible, and also on commercial alloys, in particular those based on aluminium and titanium. Data in these areas are limited, and it is concluded that Metallography has yet to reach its full potential in assisting life prediction of components and structures in service.

This chapter was written whilst the author was Reader in Metallurgy in the Department of Mechanical Engineering, University of Bristol, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forsyth, P. J. E., 1962, A two-stage process of fatigue crack growth, Proc. Crack Propagation Symp., 1961, Cranfield, pp. 76–94.

    Google Scholar 

  2. Miller, K. J., 1984, Initiation and growth rates of short fatigue cracks, Eshelby Memorial Conf., Sheffield, ( IUTAM ), pp. 477–500.

    Google Scholar 

  3. Mughrabi, H., 1985, Dislocations in fatigue, Dislocations and properties of real materials, London, The Institute of Metals, pp. 244–62.

    Google Scholar 

  4. Mughrabi, H., 1985, Cyclic deformation and fatigue—some current problems, ICSMA 7, Montreal, pp. 1–26.

    Google Scholar 

  5. Bressers, J., 1985, Fatigue and microstructure, Proc. Int. Conf. on High Temperature Alloys—Their Exploitable Potential, Petten, pp. 1–26.

    Google Scholar 

  6. Plumbridge, W. J. and Ryder, D. A., 1969, Metallography of fatigue, Metall. Reviews No. 136, Metals and Materials, pp. 119—42.

    Google Scholar 

  7. Mughrabi, H., 1980, Microscopic mechanisms of metal fatigue, Proc. Int. Conf. on Strength of Metals and Alloys, Vol. 3, eds P. Haasen, V. Gerold and G. Kostorz, Pergamon Press, pp. 1615–38.

    Google Scholar 

  8. Mughrabi, H. and Wang, R., 1980, Cyclic strain localisation and fatigue crack initiation slip bands in face centred cubic metals and single phase alloys, Int. Symp., Defects and Fracture, Tuczno, Poland, eds G. C. Sih and H. Zorski, The Hague, M. Nijhoff, pp. 15–28.

    Google Scholar 

  9. Pohl, K., Mayr, P. and Macherauch, E., 1980, Persistent slip bands in the interior of a fatigued low carbon steel, Scripta Metall., 14, 1167–9.

    Article  Google Scholar 

  10. Winter, A. T., Pederson, O. B. and Rasmussen, K. V., 1981, Dislocation microstructures in fatigued copper polycrystals, Acta Metall., 20, 738–48.

    Google Scholar 

  11. Boulanger, L., Bission, A. and Tavassoli, A. N., 1985, Labyrinth structures and persistent slip bands in fatigued 316 stainless steel, Phil. Mag. A, 51, L5 - L11.

    CAS  Google Scholar 

  12. Shirai, H. and Weertman, J. R., 1983, Fatigue dislocation structures at elevated temperatures, Scripta Metall., 17, 1253–8.

    Article  CAS  Google Scholar 

  13. Mughrabi, H., 1979, Discussion at Conf. on Fatigue Mechanisms, Kansas City, STP 675, Philadelphia, ASTM, pp. 126–7.

    Google Scholar 

  14. Lisiecki, L. L. and Weertman, J. R., 1986, Orientation effects in copper single crystals fatigued at elevated temperatures, Scripta Metall., 20, 249–52.

    Article  CAS  Google Scholar 

  15. Mughrabi, H., Ackermann, F. and Herz, K., 1979, Persistent slip bands in fatigued face centred and body central cubic metals, Fatigue mechanisms, ed. J. T. Fong, Philadelphia, ASTM 675, pp. 69–97.

    Chapter  Google Scholar 

  16. Ackermann, F., 1981, Doctorate Thesis, Univ. Stuttgart.

    Google Scholar 

  17. Pohl, K., Mayr, P. and Macherauch, E., 1981, Cyclic deformation behaviour of a low carbon steel in the temperature range between room temperature and 850 K, Int. J. Fracture, 17, 221–33.

    Article  CAS  Google Scholar 

  18. Pohl, K., Mayr, P. and Macherauch, E., 1983, Shape and structure of persistent slip bands in iron carbon alloys, Defects, fracture and fatigue, eds G. C. Sih and J. W. Provan, The Hague, M. Nijhoff, pp. 147–59.

    Google Scholar 

  19. Kanazawa, K., Yamaguchi, K. and Nishijima, S., 1985, Mapping of low cycle fatigue mechanisms at elevated temperatures for an austentic stainless steel, Low Cycle Fatigue: Future Directions, Lake George, ASTM, Philadelphia, STP 942, ed. H. Solomon (to be published).

    Google Scholar 

  20. Nilsson, J. O., 1984, Influence of nitrogen on the high temperature low cycle fatigue behaviour of austenitic stainless steels, Fatigue Engng Mat. Struc., 7, 55–64.

    Article  CAS  Google Scholar 

  21. Mughrabi, H., 1983, Cyclic deformation and fatigue of multiphase materials, Deformation of multiphase and particle containing materials, eds J. S. Bilde- Sorenson et al., Riso National Laboratory, Roskilde, Denmark, pp. 65–82.

    Google Scholar 

  22. Laird, C., 1975, Cyclic deformation of metals and alloys, Treatise on materials science and technology, Vol. 6, Plastic deformation of materials, ed. R. J. Arsenault, San Francisco, Academic Press, pp. 101–62.

    Google Scholar 

  23. Stolz, R. E. and Pineau, A. G., 1978, Dislocation-precipitate interaction and cyclic stress-strain behaviour of a/strengthened superalloy, Mat. Sci. Engng, 34, 275–84.

    Article  Google Scholar 

  24. Gerold, V., Lerch, B. A. and Steiner, D., 1984, Fatigue behaviour of age hardened alloy single crystals, Z. metall., 75, 546–53.

    CAS  Google Scholar 

  25. Wilhelm, M., 1981, The cyclic stress-strain behaviour of age hardened Cu-Co and Al-Zn-Mg alloy single crystals, Mat. Sci. Engng, 48, 91–106.

    Article  CAS  Google Scholar 

  26. Plumbridge, W. J. and Bartlett, R. A., 1982, Cyclic response of a lCr-Mo-V low alloy steel, Int. J. Fatigue, 4, 209–16.

    Article  Google Scholar 

  27. Challenger, K. D. and Vining, P. G., 1983, Substructure and back stress changes resulting from the cyclic loading of 2Cr-lMo steel at 755 K, Mat. Sci. Engng, 58, 257–67.

    Article  CAS  Google Scholar 

  28. Calderon, H. A., Weertman, J. R. and Fine, M. E., 1984, Effect of cyclic plastic deformation on elevated temperature Ostwald Ripening of an alloy with coherent precipitates, Scripta Metall., 18, 587–92.

    Article  CAS  Google Scholar 

  29. Antolovich, S. D., Liu, S. and Baur, R., 1981, Low cycle fatigue behaviour of René 80 at elevated temperature, Metall. Trans., 12A, 473–81.

    Article  CAS  Google Scholar 

  30. Nahm, A. and Moteff, J., 1981, Characterisation of fatigue substructure in Incoloy Alloy 800 at elevated temperature, Metall. Trans., 12A, 1011–25.

    Article  CAS  Google Scholar 

  31. Ermi, A. M. and Moteff, J., 1982, Correlation of substructure with time dependent fatigue properties of AISI 304 stainless steel, Metall. Trans., 13A, 1577–88.

    Article  Google Scholar 

  32. Ermi, A. M. and Moteff, J., 1983, Microstructural development and cracking behaviour of AISI 304 stainless steel tested in time dependent fatigue modes, J. Engng Mat. Technol., 105, 2130.

    Article  Google Scholar 

  33. Horton, C. A. P., Lai, J. K. L. and Skelton, R. P., 1983, The relationship between microstructure, fatigue and creep behaviour in a type 316 stainless steel, Mechanical properties of structural materials including environmental effects, IAEA Report IWGFR-49, Vol. 1, pp. 411–33.

    Google Scholar 

  34. Sanders, T. H., Frishmuth, R. E. and Embley, G. T., 1981, Temperature dependent deformation mechanisms of Alloy 718 in low cycle fatigue, Metall. Trans., 12A, 1003–10.

    Article  CAS  Google Scholar 

  35. Nilsson, J. O., 1984, Influence of dislocation-precipitate reaction on low cycle fatigue resistance of Alloy 800 at 600°C, Metal Sci., 18, 351–5.

    Article  CAS  Google Scholar 

  36. Dean, M. S. and Plumbridge, W. J., 1982, Ageing of Type 316 stainless steel and its effect on creep and fatigue behaviour, Conf. on Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Varese, Book No. 280. Institute of Metals, pp. 73–80.

    Google Scholar 

  37. Nilsson, J. O. and Thorvaldsson, T., 1985, Low cycle fatigue behaviour of alloy 800 H at 600°C—effect of grain size and y’ precipitate dispersion, Fatigue Fract. Engng Mat. Struct., 8, 373–84.

    Article  Google Scholar 

  38. Lutjering, G., Daker, H. and Munz, D., 1973, Microstructure and fatigue behaviour of aluminium alloys, Proc. Third Int. Conf on 4The Strength of Metals and Alloys’, Cambridge, Vol. 1, pp. 427–31.

    Google Scholar 

  39. Edwards, L. and Martin, J. W., 1982, The influence of dispersoids on the low cycle fatigue properties of Al-Mg-Si alloys, Proc Sixth Int. Conf. on ‘The Strength of Metals and Alloys’, pp. 873–8.

    Google Scholar 

  40. Morris, W. L., Buck, O. and Marcus, H. L., 1976, Fatigue crack initiation and early propagation in A1 2219-T851, Metall. Trans., 7, 1161–5.

    Article  Google Scholar 

  41. Kung, C. Y. and Fine, M. E., 1979, Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminium alloys, Metall. Trans., 10, 603–10.

    Article  Google Scholar 

  42. Plumbridge, W. J. and Dalski, M. E., 1977, Unpubl. M.Sc. thesis, University of Bristol.

    Google Scholar 

  43. Matsuoka, S., Kim, S. and Weertman, J. R., 1983, Mechanical and microstructural behaviour of a ferritic stainless steel under high temperature cycling, Topical Conf on Ferritic Alloys for Use in Nuclear Energy Technologies (Utah), pp. 507–16.

    Google Scholar 

  44. Rezgui, B., 1979, Interaction fatigue-fluage, effect d’un temps de mainten sur la resistance a la fatigue d’un acier (type 316) a 600°C, Rapport CEM-R-4982.

    Google Scholar 

  45. Laird, C. and Duquette, D. J., 1972, Fatigue crack initiation, Corrosion fatigue—chemistry, mechanics and microstructure, ed. O. J. Devereux, A. J. McEvily and R. W. Staehle, Nat. Assoc. Corrosion Engrs—2, Houston, pp. 88–117.

    Google Scholar 

  46. Essmann, U., Gaesele, U. and Mughrabi, H., 1981, A model of extrusions and intrusions in fatigued metals, Part 1, Phil. Mag., 44, 405–26.

    CAS  Google Scholar 

  47. Mughrabi, H., Wang, R., Diffort, K. and Essmann, U., 1983, Fatigue crack initiation by cyclic slip irreversibilities in high cycle fatigue, Fatigue mechanisms—advances in quantitative measurement of physical damage, eds J. Lankford et al., STP 811, Philadelphia, ASTM, pp. 5–43.

    Chapter  Google Scholar 

  48. Brown, L. M., 1981, Dislocations and the fatigue strength of metals, Dislocation modelling in physical systems, eds M. F. Ashby et al., Pergamon Press, pp. 51–68.

    Google Scholar 

  49. Brown, L. M. and Ogin, S. L., 1985, Role of internal stresses in the nucleation of fatigue cracks, Eshelby Memorial Lecture (Sheffield), Cambridge University Press, pp. 501–28.

    Google Scholar 

  50. Neumann, P., 1983, Fatigue, Physical metallurgy eds R. W. Cahn and P. Raason, Amsterdam, Elsevier, pp. 1553–94.

    Google Scholar 

  51. Hunsche, A., 1982, Doctorate thesis, Rheinisch-Westfälisch Technische Hochschule, Aachen.

    Google Scholar 

  52. Graf, M. and Hornbogen, E., 1978, The effect of inhomogeneity of cyclic strain on initiation of cracks, Scripta Metall., 12, 147–50.

    Article  Google Scholar 

  53. Pelloux, R. M. N. and Stoltz, R. E., 1976, Optimisation of microstructures for fatigue resistant engineering alloys, Proc. ICS MA 4, Nancy, pp. 1023–36.

    Google Scholar 

  54. Kim, Y. M. and Merrick, H. F., 1980, Fatigue properties of MA-6000E, a γ’ strengthened ODS alloy, Superalloys 1980, Metals Park, Ohio, ASM, pp. 551–61.

    Google Scholar 

  55. Bressers, J., Schusser, U., Fenske, E. and De Cat, R., 1986, Time dependent processes in the low cycle fatigue of nickel base superalloys, COST 501, to be published.

    Google Scholar 

  56. Fine, M. E., 1980, Fatigue resistance of metals, Metall. Trans., IIA, 365–79.

    Google Scholar 

  57. James, M. R. and Morris, W. C., 1982, The fracture of constituent particles during fatigue, Mat. Sci. Engng, 56, 63–71.

    Article  CAS  Google Scholar 

  58. Lankford, J., 1977, Effect of oxide inclusions on fatigue failure, Int. Metall. Rev., 11, 221–8.

    Google Scholar 

  59. Tanaka, K. and Mura, T., 1982, A theory of crack initiation at inclusions, Metall. Trans., 13A, 117–23.

    Google Scholar 

  60. McMahon, C. J. and Coffin, L. F., 1970, Mechanisms of damage and fracture in high temperature, low cycle fatigue of a cast nickel based superalloy, Metall. Trans., 1, 3443–50.

    CAS  Google Scholar 

  61. Antolovich, S. D., Bornas, P. and Strudel, J. L., 1979, Low cycle fatigue of René 80 as affected by prior exposure, Metall. Trans., 10A, 1859–68.

    Article  Google Scholar 

  62. Taplin, D. M. P., Tang, N. Y. and Leipholz, H. H. E., 1984, On fatigue- creep-environment interaction and feasibility of fatigue maps, Sixth Int. Conf. on Fracture, New Delhi, pp. 127–42.

    Google Scholar 

  63. Argon, A. S., 1982, Mechanisms and mechanics of fracture in creep alloys, Recent advances in creep and fracture of engineering materials and structures, eds B. Wilshire and D. R. J. Owen, Swansea, Pineridge Press, pp. 1–52.

    Google Scholar 

  64. Wells, C. H. and Sullivan, C. P., 1969, Interactions between creep and low cycle fatigue in Udimet 700 at 1400°F, Fatigue at high temperature, STP 459, Philadelphia, ASTM, pp. 59–74.

    Chapter  Google Scholar 

  65. May, M. J. and Honeycombe, R. W. K., 1963/4, The effect of temperature on the fatigue behaviour of Mg and some Mg alloys, J. Inst. Metals, 92, 41–9.

    Google Scholar 

  66. Saegusa, T. and Weertman, J. R., 1978, Influence of grain boundary morphology on void formation, Scripta Metall., 12, 187–91.

    Article  CAS  Google Scholar 

  67. Snowden, K. U., 1966, Fatigue crack formation in bicrystals of lead, Phil. Mag., 14, 1019–29.

    Article  CAS  Google Scholar 

  68. Lim, L. C. and Raj, R., 1984, On slip induced intergranular cavitation durin low cycle fatigue of nickel at intermediate temperature, Acta Metall., 32, 727–33.

    Article  CAS  Google Scholar 

  69. Lim, L. C. and Raj, R., 1984, Effect of boundary structure on slip induced cavitation in polycrystalline nickel, Acta Metall., 32, 1183–90.

    Article  CAS  Google Scholar 

  70. Scaife, E. C. and James, P. L., 1968, Effect of environment on intergranular cavitation, Metal Sci., 2, 217–20.

    Article  Google Scholar 

  71. Bricknall, R. H. and Woodford, D. A., 1981, Cavitation in nickel during oxidation and creep, Creep and fracture of engineering materials and structures, eds B. Wilshire and D. R. J. Owen, Swansea, Pineridge Press, pp. 249–62.

    Google Scholar 

  72. Gittins, A., 1968, The stability of igrain boundary cavities in copper, Acta Metall., 16, 517–22.

    Article  CAS  Google Scholar 

  73. Tang, N. Y., Taplin, D. M. R. and Plumtree, A., 1985, Schema for depicting cavity nucleation during high temperature fatigue, Mat. Sci. Technol., 1, 145–51.

    CAS  Google Scholar 

  74. Beere, W., 1981, Theoretical treatment of cavity growth and nucleation, Cavities and cracks in creep and fatigue, ed. J. Gittus, London, Elsevier Applied Science, pp. 1–27.

    Google Scholar 

  75. Skelton, R. P., 1966, The growth of grain boundary cavities during high temperature fatigue, Phil. Mag., 14, 563–72.

    Article  CAS  Google Scholar 

  76. Page, R., Weertman, J. R. and Roth, M., 1980, Investigation of fatigue-induced grain boundary cavitation by small angle neutron scattering, Scripta Metall., 14, 773–7.

    Article  CAS  Google Scholar 

  77. Yoo, M. H., Ogle, J. C., Borie, B. S., Lee, E. H. and Hendricks, R. W., 1982, Small angle neutron scattering study of fatigue induced cavities in nickel, Acta Metall., 30, 1733–42.

    Article  Google Scholar 

  78. Smith, E. and Barnby, T. J., 1967, Crack nucleation in crystalline solids, Metal Sci., 1, 56–64.

    Article  CAS  Google Scholar 

  79. Driver, J. H., 1971, The effect of grain boundary precipitates on the high temperature fatigue strength of austenitic stainless steels, Metal Sci., 5, 47–50.

    Article  CAS  Google Scholar 

  80. Tang, N. Y., Plumtree, A. and Taplin, D. M. R., 1984, A model for predicting intergranular propagation of fatigue cracks at elevated temperatures, Second Irish Durability and Fracture Conference, Dublin, pp. 1–13.

    Google Scholar 

  81. Tang, N. Y. and Plumtree, A., 1985, A note on grain boundary diffusion controlled cavity growth during elevated temperature fatigue, Metall. Trans., 16A, 300–2.

    Google Scholar 

  82. Fleck, R. G., Taplin, D. M. R. and Beevers, C. J., 1975, An investigation of the nucleation of creep cavities by lMv electron microscopy, Acta Metall., 23, 415–34.

    Article  CAS  Google Scholar 

  83. Thorpe, T. W. and Smith, G. C., 1981, Elevated temperature low cycle fatigue of AISI 316 stainless steel, Proc. Fifth Conf. on Fracture, Cannes, Advances in fracture research, ed. D. François, pp. 2413–22.

    Google Scholar 

  84. Plumbridge, W. J., Priest, R. H. and Ellison, E. G., 1979, Damage formation during fatigue-creep interactions, Third Int. Conf. on Mechanical Behaviour of Materials, Cambridge, pp. 129–39.

    Google Scholar 

  85. Plumbridge, W. J. and Miller, K. J., 1972, The effect of prior fatigue deformation on creep, Int. Conf. on Creep Strength in Steel and High Temperature Alloys, Sheffield, pp. 50–3.

    Google Scholar 

  86. Ellison, E. G. and Paterson, A. J. F., 1976, Creep fatigue interactions in lCr-Mo-V steel, Proc. Inst. Mech. Engrs, 190, 321–50.

    Google Scholar 

  87. Plumbridge, W. J., Bartlett, R. A., Chung, T. E. and Ellison, E. G., 1977, Mechanism of fatigue-creep interaction in a low alloy steel, Fourth Int. Conf. on Fracture, Waterloo, pp. 831–7.

    Google Scholar 

  88. Nazmy, M. Y., 1982, Sequential effect of creep and fatigue in a cast Ni-base alloy, Scripta Metall, 16, 823–6.

    Article  Google Scholar 

  89. Wei, K. and Dyson, B. F., 1982, Creep-fatigue interactions in 316 stainless steel under torsional loading, Conf. on Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Varese, Institute of Metals, Book No. 280, pp. 136–44.

    Google Scholar 

  90. Neailey, K. and Plumbridge, W. J., unpubl. work.

    Google Scholar 

  91. Wareing, J., 1977, Creep-fatigue interaction in austenitic stainless steels, Metall. Trans., 8A, 711–21.

    Article  Google Scholar 

  92. Gladwin, D. and Miller, D. A., 1982, The effect of cycle waveshape on the low cycle fatigue behaviour of 20%Cr-25%Ni-Nb stainless steel at 650°C, Fatigue Engng Mat. Struct., 5, 275 - 86.

    Article  Google Scholar 

  93. Miller, D. A., 1983, Fatigue-creep mechanisms maps for 20%Cr 25%Ni/Nb stainless steel at 593°C and 650°C, Int. Conf. on Advances in Life Prediction Methods, New York, ASME.

    Google Scholar 

  94. Plumbridge, W. J., Dean, M. S. and Miller, D. A., 1982, The importance of failure mode in fatigue-creep interactions, Fatigue Engng Mat. Struct., 5, 101–14.

    Article  Google Scholar 

  95. Plumbridge, W. J. and Ellison, E. G., 1986, Low cycle fatigue behaviour of superalloy blade materials at elevated temperature, Int. Conf. on Mechanical Behaviour of Superalloys, London, Institute of Metals.

    Google Scholar 

  96. Plumbridge, W. J. and Stanley, M., 1986, The effects of dwell periods on the high temperature fatigue behaviour of Titanium (829) alloy, Int. Conf. on Fatigue of Engng Mat. and Structures, Sheffield, pp. 377–86.

    Google Scholar 

  97. Nazmy, M. Y., 1983, High temperature low cycle fatigue of IN 738 and application of strain range partitioning, Metall. Trans, 14, 449–61.

    Article  Google Scholar 

  98. Nazmy, M. Y., 1983, Effect of multiple crack propagation on the high temperature low cycle fatigue of a cast nickel-base alloy, Scripta Metall., 17, 491–4.

    Google Scholar 

  99. Neailey, K. and Plumbridge, W. J., 1986, Application of the friction stress approach to creep in Type 316 stainless steel, Conf. on Designing with High Temperature Materials, York, Institute of Metals.

    Google Scholar 

  100. Neailey, K. and Plumbridge, W. J., 1987, High temperature mechanical properties of two batches on Type 316 stainless steel, Paper submitted to Conf. on Stainless Steels, 1987, The Institute of Metals.

    Google Scholar 

  101. Laird, C., 1977, The general cyclic stress-strain response of aluminium alloys, Philadelphia, ASTM, STP 637, pp. 3–35.

    Google Scholar 

  102. Bhat, S. P. and Laird, C., 1979, High temperature cyclic deformation of precipitation hardened alloy—II. Fully coherent precipitates, Acta Metall., 27, 1873–83.

    Article  CAS  Google Scholar 

  103. Horibe, A., Lee, J. K. and Laird, A., 1984, Cyclic deformation of Al-4%Cu polycrystals containing 0 precipitate, Fatigue Engng Mat. Struct., 7, 145–54.

    Article  CAS  Google Scholar 

  104. Mabuchi, H. and Nakayamo, Y., 1986, Microstructure and fracture of fatigued polycrystalline Al-Mg alloys at elevated temperature, Scripta Metall., 20, 717–21.

    Article  CAS  Google Scholar 

  105. Bhat, S. P. and Laird, C., 1979, High temperature cyclic deformation of precipitation hardened alloy—I. Partially coherent precipitates, Acta Metall., 27, 1861–71.

    Article  CAS  Google Scholar 

  106. Polmear, I. J., 1981, Light alloys—metallurgy of the light metals, London, Edward Arnold, pp. 37–42.

    Google Scholar 

  107. Boyapati, K. and Polmear, I. J., 1979, Fatigue-microstructure variations in some aged aluminium alloys, Fatigue Engng Mat. Struct., 2, 23–33.

    Article  CAS  Google Scholar 

  108. Culver, L. E., Balthazar, J. C. and Radon, J. C., 1983, Temperature effects on the fatigue behaviour of an aluminium-silicon alloy, Trans. Can. Soc. Mech. Engrs, 8, 150–6.

    Google Scholar 

  109. Saleh, Y. and Margolin, H., 1980, Low cycle fatigue behaviour of Ti-Mn alloys: cyclic stress-strain response, Metall. Trans., 11A, 1295–302.

    Article  Google Scholar 

  110. Suhua, A., Zhongguang, W. and Yuebo, X., 1985, The fatigue deformation and fracture characteristics of coarse grained polycrystalline titanium, Scripta Metall., 19, 1089–93.

    Article  CAS  Google Scholar 

  111. Plumbridge, W. J. and Stanley, M., 1986, Low cycle fatigue of a titanium 829 alloy, Int. J. Fatigue, 8, 209–16.

    Article  CAS  Google Scholar 

  112. Mahajan, Y. and Margolin, H., 1982, Low cycle fatigue behaviour of Ti-6Al-2Sn-4Zr-6Mo: Part II. Cyclic deformation behaviour and low cycle fatigue, Metall. Trans., 13A, 269–74.

    Article  Google Scholar 

  113. Koss, D. A. and Wojcik, C. C., 1976, Flow stress asymmetry and cyclic stress strain response in a BCC Ti-V alloy, Metall. Trans., 7A, 1243–4.

    Article  Google Scholar 

  114. Saleh, Y. and Margolin, H., 1982, Low cycle fatigue of Ti-Mn alloys: fatigue life, Metall. Trans., 13A, 1275–81.

    Article  Google Scholar 

  115. Wells, C. H. and Sullivan, C. P., 1969, Low cycle fatigue crack initiation in TÍ-6AMV, Trans. Am. Soc. Metals., 62, 263–70.

    CAS  Google Scholar 

  116. Steele, R. K. and McEvily, A. J., 1976, High cycle fatigue behaviour of TÍ-4A1-4V alloy, Engng Fracture Mech., 8, 31–7.

    Article  CAS  Google Scholar 

  117. Mahajan, Y. and Margolin, H., 1982, Low cycle fatigue behaviour of Ti-6Al-2Sn-4Zr06Mo: Part 1. The role of microstructure in low cycle crack nucleation and early crack growth. Metall. Trans., 13A, 257–68.

    Article  Google Scholar 

  118. Eylon, D. and Hall, J. A., 1977, Fatigue behaviour of beta processed titanium alloy IMI 685, Metall. Trans., 8A, 981–90.

    Article  Google Scholar 

  119. Shih, D. S., Lin, F. S. and Starke, E. A. Jr, 1985, The effect of microstructure and texture on the low cycle fatigue properties of Ti-6Al-2Nb-lTa-0-8Mo, Titanium science and technology, eds G. Lutjering, U. Zwicker and W. Bunk, Deutsche Gesellschaft für Metallkunde, pp. 2099–106.

    Google Scholar 

  120. Eylon, D., Bartel, T. L. and Rosenblum, M. E., 1980, High temperature low cycle fatigue in beta processed Ti-5Al-5Sn-2Zr-2Mo-025Si, Metall. Trans., 11A, 1361–7.

    Article  Google Scholar 

  121. Hoffman, C., Eylon, D. and McEvily, A. J., 1982, Influence of microstructure on the elevated temperature fatigue resistance of a titanium alloy, Low cycle fatigue and life prediction, eds C. Amzallag, B. N. Leis and P. Rabbe, STP 770, Philadelphia, ASTM, pp. 5–22.

    Chapter  Google Scholar 

  122. Evans, W. J. and Gostelow, C. R., 1979, The effect of hold time on the fatigue properties of a processed titanium alloy, Metall. Trans., 10A, 1837–46.

    Article  Google Scholar 

  123. White, J., Loretto, M. H. and Smallman, R. E., 1984, The effect of dwells on low cycle fatigue on IMI 829, Fifth Conf. on Titanium, Munich, pp. 2297–304.

    Google Scholar 

  124. Davidson, D. L. and Eylon, D., 1980, Titanium alloy fatigue fracture facet investigation by selected area electron channeling, Metall. Trans., 11A, 837 — 43.

    Article  Google Scholar 

  125. Eylon, D. and Rosenblum, M. E., 1982, Effects of dwell on high temperature low cycle fatigue of a titanium alloy, Metall. Trans., 13A, 322–4.

    Article  Google Scholar 

  126. Fong, J. T., ed., 1979, Fatigue mechanisms, STP 675, Philadelphia, ASTM.

    Google Scholar 

  127. Lankford, J., Davidson, D., Morris, W. L. and Wei, R. P., eds, 1983, Fatigue mechanisms: advance in quantitative measurement of physical damage, STP 811, Philadelphia, ASTM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Plumbridge, W.J. (1987). Metallography of High Temperature Fatigue. In: Skelton, R.P. (eds) High Temperature Fatigue. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3453-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3453-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8046-0

  • Online ISBN: 978-94-009-3453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics