Skip to main content

The Production Potential of Soils: Part II— Sensitivity of the Soil Systems in Southern Europe to Degrading Influxes

  • Chapter
Book cover Scientific Basis for Soil Protection in the European Community

Summary

The influxes that threaten the productivity of the soil systems in Southern Europe are discussed and the respective sensitivities of the main soil taxonomic units are qualitatively evaluated. The sensitivities are referred to causes contributing to the degradation of the qualities of the soil peda. Such causes examined were: loss of soil volume and organic matter, physical degradation, chemical degradation and fertility deterioration. Due to the predominantly sloping terrain and the adverse climatic conditions in Southern Europe soil erosion is the dominant deterioration process. It is related to all the causes of productivity degradation, and strongly affects the cultivated soils on the river terraces and on tertiary hills. Erosion also damages the soils on the mountain watersheds that have lost their vegetative cover. The sensitivity of the soil systems to erosion depends on the factors of the USLE and on the depth and morphological configuration of the respective soil peda. Soil taxonomic units having shallow peda and limiting horizons are the most sensitive. Soils of the flood plains are mainly sensitive to physical and chemical degradation and less to fertility deterioration. Their sensitivities depend on the textural and mineralogical compositions, on the acidity of the peda and on the organic matter content of the surface horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonakopoulos, G. and Yassoglou, N. J. (1986). Distribution patterns of clay and ‘free’ oxides in polygenetic soil profiles on pleistocene surface in Greece. Trans. XIII Congr. Int. Soc. Soil., pp. 1034–5.

    Google Scholar 

  2. Avetjan, S. S., Rosanov, B. G. and Zborishuk, N. G. (1984). Change of structure and fabrics of clay alluvial soils under agriculture, ILRI Publication No. 37, pp. 82–5.

    Google Scholar 

  3. Becher, H. H., Swertmann, U. and Sturmer, H. (1985). Crop yield reduction due to reduced plant available water caused by water erosion. In: Soil Erosion and Conservation (Eds S. A. El-Swaify, W. C. Moldenhauer and A. Lo). Soil Conservation Society of America, Ankeny, USA, pp. 365–73.

    Google Scholar 

  4. Belpomm, M. (1980). For an application of the soil world charter. In: Assessment of Erosion (Eds M. DeBoodt and D. Gabriels), John Wiley, Chichester, pp. 9–22.

    Google Scholar 

  5. Boels, D. (1982). Physical soil degradation in the Netherlands. In: Soil Degradation (Eds D. Boels, D. B. Davies and A. E. Johnston), Balkema, Rotterdam, pp. 47–65.

    Google Scholar 

  6. Bounza, G. (1984). Oberflächenabflüss und Bodenabtrag in alpinen Grasslandökosystemen. Verhadlungen der Gesellschaft für Ökologie, 12, 101–9.

    Google Scholar 

  7. Carter, D. L., Berg, R. D. and Sanders, B. J. (1985). The effect of furrow irrigation erosion on crop productivity. Soil Sei. Soc. Amer. J., 49, 207–21.

    Article  Google Scholar 

  8. Charters, C. J. (1980). A quaternary soil sequence in the Kennet Valley, Central Southern England. Geoderma, 23, 125–46.

    Article  Google Scholar 

  9. Chisci, G. (1982). Physical soil degradation due to hydrological phenomena in relation to change in agricultural systems in Italy. In: Soil Degradation (Eds D. Boels, D. B. Davies and A. E. Johnston), Balkema, Rotterdam, pp. 95–103.

    Google Scholar 

  10. Cooke, G. W. (1972). Fertilizing for Maximum Yield, Crosby Lockwood, London, 296 pp.

    Google Scholar 

  11. Cooke, G. W. (1986). Nutrient balances and the need for potassium in humid tropical regions. In: Nutrient Balances and the Needfor Potassium. Proceedings 13th Congr. of I.P.I, (to be published).

    Google Scholar 

  12. Dutil, P. (1982). Losses and accumulation of organic matter in French soils. In: Soil Degradation (Eds D. Boels, D. B. Davies and A. E. Johnston). Balkema, Rotterdam, pp. 181–5.

    Google Scholar 

  13. Eisenhauer, D. E., Stieb, D. J., Duke, H. R. and Heerman, D. F. (1983). Transient surface seal development with shallow overland flow. ASAE Paper No. 2057.

    Google Scholar 

  14. Evans, R. (1980). Mechanics of water erosion and their spatial and temporal controls: an empirical viewpoint. In: Soil Erosion (Eds M. J. Kirkby and R. P. C. Morgan), John Wiley, Chichester, pp. 109–28.

    Google Scholar 

  15. Fao (1970). A Provisional Methodology for Soil Degradation Assessment, Rome.

    Google Scholar 

  16. Fereres, E. (1983). Short and long-term effects of irrigation on the fertility and productivity of soils. In: Nutrient Balances and the Need for Fertilizers in Semiarid and Arid Regions, IPI, Bern, Switzerland, pp. 283–304.

    Google Scholar 

  17. Frye, W. E., Bennett, O. L. and Buntley, G. J. (1985). Restoration of crop productivity on eroded or degraded soils. In: Soil Erosion and Crop Productivity (Eds R. F. Follett, B. A. Stewart and I. Y. Ballew). American Society of Agronomy, Madison, Wisconsin, pp. 339–56.

    Google Scholar 

  18. Fournier, F. (1972). Conservation des Sols, Conseil de l’Europe, 206 pp.

    Google Scholar 

  19. Gantzer, C. J. and McCarty, T. R. (1985). Corn yield prediction for a claypan soil using a productivity index. In: Erosion and Soil Productivity, American Society of Agricultural Engineers, St Joseph, Michigan, ÜSA, pp. 170–81.

    Google Scholar 

  20. Gerrard, A. J. (1981). Soils and Landforms. An Integration of Geomorphology and Pedology, George Allen and Unwin, London, 219 pp.

    Google Scholar 

  21. Graham-Bryce, I. J. (1981). The behaviour of pesticides in soil. In: The Chemistry of Soil Processes. (Eds D. J. Greenland and M. H. B. Hayes) John Wiley, Chichester, pp. 621–70.

    Google Scholar 

  22. Hamdi, H. (1984). Soil of Egypt, problems arising from agriculture. Fertilizer and Agriculture, No. 87, 3–7.

    Google Scholar 

  23. Hanotriaux, G. (1980). Runoff erosion and nutrient losses on loess soil in Belgium. In: Assessment of Erosion (Eds M. De Boodt and D. Gabriels), John Wiley, Chichester, pp. 369–77.

    Google Scholar 

  24. Heilmann, P. G. F. (1972). On the formation of red soils in the Lower Crati Basin (S. Italy), Doctoral thesis. State University of Utrecht.

    Google Scholar 

  25. Helvey, J. D. Tiedemann, A. R. and Anderson, I. D. (1985). Plant nutrient losses by soil erosion and mass movement after wildfire. J. Soil. Water Cons., 40(1), 168–73.

    Google Scholar 

  26. Henin, S., Michon, X. Gobillor, T. (1954). Etude de l’érosion de vallees de Haute-Durance et du Hautes Drac. Assemblee generale de Rome, publ. 36 de l’Associational d’Hydrologie.

    Google Scholar 

  27. Jenny, H. (1941). Factors of Soil Formation, McGraw-Hill, New York.

    Google Scholar 

  28. Jenny, H. (1980). The Soil Resource Origin and Behaviour, Springer-Verlag, New York, 377 pp.

    Google Scholar 

  29. Jones, L. H. P. and Jarvis, S. C. (1981). The fate of heavy metals. In: The Chemistry of Soil Processes (Eds D. I. Greenland and M. H. B. Hayes), John Wiley, Chichester, pp. 593–620.

    Google Scholar 

  30. Johnston, A. E. (1982). The effects of farming system on the amount of organic matter and its effect on yield at Rothamsted and Woburn. In: Soil Degradation (Eds D. Boels, D. E. Davies and A. E. Johnston), Balkema, Rotterdam, pp. 187–202.

    Google Scholar 

  31. Kirkby, M. J. (1980). The problem. In: Soil Erosion (Eds M. J. Kirkby and R. P.C. Morgan), John Wiley, Chichester, p. 1.

    Google Scholar 

  32. Kladivko, E. J., Mackey, A. D. and Bradford, J. M. (1986). Earthworms as a factor in the reduction of soil crusting. Soil Sei. Soc. Amer. 50 (1), 191–6.

    Article  Google Scholar 

  33. Kuron, H. (1956). Überblick über die Arbeiten des Unterausschusses für Kulturbauwesen für Bodenerosion im Deutschen Ausschuss für Kulturbauwesen in die Jahren 1938 bis 1945. Schriftenreihe des Kuratoriums für Kulturebauwesen, 5, Hamburg.

    Google Scholar 

  34. Kuipers, H. (1982). Processes in physical soil degradation in mechanized agriculture. In: Soil Degradation (Eds D. Boels, D. B. Davies and A. E. Johnston), A. A. Balkema, Rotterdam, pp. 7–18.

    Google Scholar 

  35. Larson, W. E., Pierce, F. J. and Dowdy, R. H. (1983). The threat of soil erosion to long-term crop production, Science, 219 (4584), 458–65.

    Article  PubMed  CAS  Google Scholar 

  36. Larson, W. E., Pierce, F. J. and Dowdy, R. H. (1985). Loss in long-term productivity from soil erosion in the United States. In: Soil Erosion and Conservation (Eds S. A. El-Swaify, W. C. Moldenhauer and A. Lo), Soil Conservation Society of America, Ankey, USA, pp. 262–71.

    Google Scholar 

  37. Lee, J. and Louis, A. (1986). Land use and soil suitability. In: Soil Map of Europe (Eds R. Tavernier and A. Louis), E.E.C.

    Google Scholar 

  38. Margaropoulos, P. TH. (1963). Water Erosion and the Torrent Phenomenon, Danigeli Press, Athens (in Greek).

    Google Scholar 

  39. Mengel, K. and Kirkby, E. A. (1982). Principles of Plant Nutrition, International Potash Institute, Bern, Switzerland, 655 pp.

    Google Scholar 

  40. Mcluhan, T. C. (1971). Touch The Earth. A Self-Portrait of Indian Existence, Simon and Schuster, Rockefeller Center, New York, 185 pp.

    Google Scholar 

  41. Miller, W. P. and Macfee, W. W. (1983). Distribution of cadmium, zinc, copper and lead in soils of industrial Northwestern Indiana. J. Environ. Quality, 12, 29–33.

    Article  CAS  Google Scholar 

  42. Morgan, R. P. C. (1985). Assessment of soil erosion risk in England and Wales. Soil Use and Management, 1(4), 127–31.

    Article  Google Scholar 

  43. Norton, L. D. (1986). Erosion-sedimentation in a closed drainage basin in Northern Indiana. Soil Sci. Soc. Amer. 50(1), 209–13.

    Article  Google Scholar 

  44. Onofiok, O. and Singer, M. J. (1984). Scanning electron microscope studies of surface crusts formed by simulated rainfall. Soil Sci. Soc. Amer. J., 48(5), 1137–43.

    Article  Google Scholar 

  45. Onken, A. B., Wendt, C. W., Wilke, O. C., Hargrove, R. S., Baush, W. and Barnes, L. (1979). Irrigation system effects on applied fertilizer nitrogen movement in soil. Soil Sci. Soc. Amer. Proc., 43, 367–72.

    Article  CAS  Google Scholar 

  46. Oster, J. D. and Schover, F. W. (1979). Infiltration as influenced by irrigation water quality. Soil Sci. Soc. Amer. Proc., 43, 444–7.

    Article  CAS  Google Scholar 

  47. Plato, Critias, The Loed Classical Library, William Heinemann, Harvard University Press, pp. 270–8.

    Google Scholar 

  48. Portier, J. (1972). Carte pédologique de France au 1/100.000, Toulon, Institute National de la Recherche Agronomique, Versailles, 130 pp.

    Google Scholar 

  49. Richter, G. (1980). Soil erosion mapping in Germany and in Czechoslovakia. In Assessment of Erosion (Eds M. De Boodt and D. Gabriels), John Wiley, Chichester, pp. 29–54.

    Google Scholar 

  50. Roquero, C. (1979). The potential productivity of Mediterranean Type Climates and their yield potentials. Proc. 14th Colloquium of the IPI, Sevilla, Spain, pp. 21–42.

    Google Scholar 

  51. Runge, C. F., Larson, W. E. and Roloff, G. (1985). Using productivity measures to target conservation programs: a comparative analysis. J. Soil and Water, 41(1), 45–9.

    Google Scholar 

  52. Sadler, J. M. (1984). Effects of top soil loss and intensive cropping on soil properties related to crop production potential of a Padzolic Gray Luvisol. Can. J. Soil Sci., 64(4), 533–43.

    Article  CAS  Google Scholar 

  53. Sauerbeck, D. R. (1982). Influence of crop rotation, manurial treatment and soil tillage on the organic matter content of German soils. In: Soil Degradation (Eds D. Boels, D. B. Davies and A. E. Johnston), Balkema, Rotterdam, pp. 163–77.

    Google Scholar 

  54. Schumm, S. A. and Harvey, M. D. (1982). Natural erosion in the USA. In: Determinants of Soil Loss Tolerance, ASA Publication No. 45, Madison, Wisconsin, pp. 15–21.

    Google Scholar 

  55. Skidmore, E. L. (1982). Soil loss tolerance. In: Determinants of Soil Loss Tolerance, American Society of Agronomy, Spec. Publ. No. 45, pp. 87–93.

    Google Scholar 

  56. Sochting, H. G. and Sauerbeck, D. R. (1982). Soil organic matter properties and turnover of plant residues as influenced by soil type climate and farming practice. In: Soil Degradation (Eds D. Boels, D. B. Davies and A. E. Johnston), Proc. Land Use Sem. Soil Dey. Sponsored by the C.E.C. Balkema, Rotterdam, pp. 145–62.

    Google Scholar 

  57. SOIL SURVEY STAFF (1975). Soil Taxonomy, USDA Agr. Handbook No. 436, US Gov. Printing Office, Washington, 754 pp.

    Google Scholar 

  58. Watson, A. (1985). Soil erosion and vegetation damage near ski lifts at Cairn Gorm, Scotland. Biological Conservation, 33(4), 363–81.

    Article  Google Scholar 

  59. Wilkin, D. C. and Hebel, S. J. (1982). Erosion, redeposition, and delivery of sediment to Midwestern streams. Water Resources Res., 18(4) 1278–82.

    Article  Google Scholar 

  60. Wilson, S. J. and Cooke, R. U. (1980). Wind erosion. In: Soil Erosion (Eds M. J. Kirkby and R. P. C. Morgan), John Wiley, Chichester, pp. 227–51.

    Google Scholar 

  61. Wischmeier, W. H. and Smith, D. D. (1978). Predicting rainfall erosion losses— a guide to conservation planning, USDA /SEA. Agr. Handbook 537.

    Google Scholar 

  62. Wortman, S. and Cummings, R. W. JR. (1979). To Feed This World, John Hopkins University Press, Baltimore, 440 pp.

    Google Scholar 

  63. Yassoglou, N. J. (1969). Morphological observation on Greek soils producing early maturing fruit and vegetable crops. In: Value to Agriculture of High- quality Waterfrom Nuclear Desalination, International Atomic Energy Agency, Vienna, pp. 255–63.

    Google Scholar 

  64. Yassoglou, N. J., Apostolakis C., Nychas, A. and Kosmas, C. (1982). Soil Survey of Argos Plain in Greece, Ministry of Agriculture and Athens Faculty of Agriculture, Athens (in Greek).

    Google Scholar 

  65. Yassoglou, N. J., Kosmas, C., Assimakopoulos, J. and Kallianou, CH. Heavy metal contamination of roadside soils in the Major Athens Area (to be published.

    Google Scholar 

  66. Zachar, D. (1982). Soil Erosion, Elsevier, Amsterdam, 547 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Yassoglou, N.J. (1987). The Production Potential of Soils: Part II— Sensitivity of the Soil Systems in Southern Europe to Degrading Influxes. In: Barth, H., L’Hermite, P. (eds) Scientific Basis for Soil Protection in the European Community. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3451-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3451-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8045-3

  • Online ISBN: 978-94-009-3451-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics