Skip to main content

Fracture and Elevated-temperature Static-fatigue of Ceramics Containing Small Flaws

  • Chapter
Advanced Materials for Severe Service Applications

Abstract

Studies concerning effects of flaw size on brittle fracture and elevated-temperature static-fatigue strengths are reviewed. Although ceramic materials fracture elastically, fracture stress has a nonlinear relation to flaw size, and the critical stress intensity factor for a small crack is lower than that for a large crack. The relationship is explained well by a fracture model, which takes into account the interaction between a flaw and the microstructure of the ceramic. A crack can be arrested below a certain stress level, i.e. below the static-fatigue limit. The static-fatigue limit also shows a nonlinear relationship to flaw size similar to that for brittle fracture. The effects of temperature, environment and material on static-fatigue limit are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spriggs, R. M, Mitchell, J. B. and Vasilos, T., J. Am. Ceram. Soc., 47 (1964), 323.

    Article  CAS  Google Scholar 

  2. Pavelchek, E. K. and Doremus, R. H., J. Mater. Sci., 9 (1974), 1803.

    Article  CAS  Google Scholar 

  3. Kirchner, H. P., Gruver, R. M. and Sotter, W. A., Mater. Sci. Engng, 22 (1976), 147.

    Article  CAS  Google Scholar 

  4. Bourne, W. G. and Tressler, R. E., Int. Svmp. Fraet. Mech. Ceram., Vol. 3, 1978, p. 113.

    CAS  Google Scholar 

  5. Kawai, M, Abe, H. and Nakayama, J., Proc. Int. Symp. Factors Densification Sinter. Oxide Nonoxide Ceram., 1978, p. 545.

    Google Scholar 

  6. Takeda, Y., Kosugi, T., Iijima, S. and Nakamura, K., Proc. Int. Symp. Ceram. Components for Engines, 1984, p. 529.

    Google Scholar 

  7. Tsukuma, K., Ueda, K. and Tsukidate, T., Ann. Mtg Ceram. Soc., Japan, 1984, p. 119.

    Google Scholar 

  8. Saha, C. K. and Cooper, A. R. Jr, J. Am. Ceram. Soc., 67 (1984), C-158.

    Article  CAS  Google Scholar 

  9. Hoshide, T., Furuya, H., Nagase, Y. and Yamada, T., Int. J. Fract., 26 (1984), p. 119

    Article  Google Scholar 

  10. Takahashi, I., Usami, S., Nakakado, K., Miyata, H. and Shida, S., J. Ceram. Soc. Japan, 93 (1985), 186.

    Google Scholar 

  11. Kimoto, H., Usami, S. and Miyata, H., Trans. Japan Soc. Mech. Engng, 51 (1985), 2482.

    Article  Google Scholar 

  12. Usami, S., Kimoto, H., Takahashi, I. and Shida, S., Engng. Fract. Mech., 23 (1986), 745.

    Article  Google Scholar 

  13. Kawai, M., Abe, H. and Nakayama, J., Int. Svmp. Fract. Mech. Ceram., Vol. 6, 1983, p. 587.

    CAS  Google Scholar 

  14. Takahashi, I., Usami, S. and Machida, T., Trans. Japan Soc. Mech. Engrs, 52 (1986), 2378.

    Article  Google Scholar 

  15. Machida, T., Usami, S. and Takahashi, I., to appear in Trans. Japan Soc. Mech. Engrs, 53 (1987).

    Google Scholar 

  16. Usami, S., Takahashi, I. and Machida, T., Engng, Fract. Mech., 25 (1986), 483.

    Article  Google Scholar 

  17. Kirchner, H. P. and Isaacson, E. D., Int. Symp. Fract. Mech. Ceram., Vol. 5, 1983, p. 57.

    Google Scholar 

  18. Rice, R. W., Freiman, S. W. and Mecholsky, J. J. Jr, J. Am. Ceram. Soc., 63 (1980), 129.

    Article  CAS  Google Scholar 

  19. Gell, M. and Smith, E., Acta Met., 15 (1967), 253.

    Article  CAS  Google Scholar 

  20. Evans, A. G., Proc. 3rd Int. Conf. Mech. Behav. Mater., Vol. 1, 1979, p. 279.

    Google Scholar 

  21. Takahashi, I., Nakakado, K. and Miyata, H., Paper presented at 61st Ann. Mtg of Japan Soc. Mech. Engng, No. 830–10, 1983, p. 31.

    Google Scholar 

  22. Petrovic, J. J. and Jacobson, L. A., Ceramics for High Performance Applications, 1974, p. 397

    Google Scholar 

  23. Petrovic, J. J. and Mendiratta, M. G., Fracture Mechanics Applied to Brittle Materials, ASTM STP 678, 1979, p. 83.

    Google Scholar 

  24. Evans, A. G. and Weiderhorn, S. M., J. Mater, Sci., 9 (1974), 270.

    Article  CAS  Google Scholar 

  25. Evans, A. G., J. Mater. Sci., 7 (1972), 1137.

    Article  CAS  Google Scholar 

  26. Blumenthal, W. and Evans, A. G., J. Am. Ceram. Soc., 67 (1984), 751.

    Article  CAS  Google Scholar 

  27. Newman, J. C. and Raju, I. S., Engng. Fract. Mech., 15 (1981), 185.

    Article  Google Scholar 

  28. Wiederhorn, S. M., J. Am. Ceram. Soc., 50 (1967), 407.

    Article  CAS  Google Scholar 

  29. Mendiratta, M. G. and Petrovic, J. J., J. Am. Ceram. Soc., 61 (1978), 226.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Usami, S., Takahashi, I., Kimoto, H., Machida, T., Miyata, H. (1987). Fracture and Elevated-temperature Static-fatigue of Ceramics Containing Small Flaws. In: Iida, K., McEvily, A.J. (eds) Advanced Materials for Severe Service Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3445-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3445-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8042-2

  • Online ISBN: 978-94-009-3445-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics