Skip to main content

A Physically Based Internal Variable Model for Rate Dependent Plasticity

  • Chapter
Unified Constitutive Equations for Creep and Plasticity

Abstract

In 1978 Krieg et al. published a ‘unified creep-plasticity’ model for rate-dependent deformation of metals, incorporating a power-law relationship between inelastic strain rate, applied stress, and instantaneous value of two internal variables.1 The internal variables were permitted to evolve by a Bailey—Orowan process, including strain hardening and recovery. Hardening was taken to be linear and to increase the internal variables rather than the flow stress directly; recovery was treated as thermal (as opposed to dynamic strain-activated) only, where the kinetics were derived from dislocation mechanics for the process in question. The physical basis was established because (a) the power-law flow rule was taken to be a mathematically convenient approximation to rate-process theory at fixed microstructural state, (b) linear strain hardening in polycrystals is usually viewed as an aggregate manifestation of the linear (stage II) hardening behavior of fcc single crystals oriented initially for single slip and in the absence of dynamic recovery,2,3 and (c) the recovery kinetics were derived from dislocation models. The value of physical bases follows, of course, from the confidence (indeed the meaning) that is given to extrapolation of the relationship beyond the range of measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Krieg, J. C. Swearengen and R. W. Rohde, in Inelastic Behavior of Pressure Vessel and Piping Components, ed. T. Y. Chang and E. Krempl, ASME, New York, 1978, p. 15.

    Google Scholar 

  2. A. W. Thompson, in Work Hardening in Tension and Fatigue, ed. A. W. Thompson, AIME, New York, 1977, p. 89.

    Google Scholar 

  3. J. C. Swearengen, T. C. Lowe and J. Lipkin, in Annual Reviews of Materials Science, ed. R. A. Huggins, Annual Reviews, Inc., Palo Alto, California, p. 249.

    Google Scholar 

  4. R. J. Asaro and A. Needleman, Brown University Research Report, May 1984.

    Google Scholar 

  5. A. K. Miller, ASME J. Eng. Mat. Techn., 96 (1976) 97.

    Article  Google Scholar 

  6. E. W. Hart, ASME J. Eng. Mat. Techn., 98 (1976) 193.

    Article  CAS  Google Scholar 

  7. S. R. Bodner and Y. Partom, ASME J. Appl. Mech., 42 (1975) 385.

    Article  Google Scholar 

  8. R. W. Rohde and J. C. Swearengen, in Mechanical Testing for Deformation Model Development, ed. R. W. Rohde and J. C. Swearengen, ASTM STP 765, 1982, p. 469.

    Chapter  Google Scholar 

  9. J. C. Swearengen and J. H. Holbrook, Res. Mech., 13 (1985) 93.

    Google Scholar 

  10. R. D. Krieg, in Mechanical Testing for Deformation Model Development, ed. R. W. Rohde and J. C. Swearengen, ASTM STP 765, 1982, p. 139.

    Chapter  Google Scholar 

  11. E. W. Hart, Acta Metall., 18 (1970) 599.

    Article  CAS  Google Scholar 

  12. R. D. Krieg, Proc. 4th Conf. Structural Mechanics in Reactor Technology, Paper No. M6 /4, 1977.

    Google Scholar 

  13. K. S. Chan, S. R. Bodner, K. P. Walker and U. S. Lindholm, Second Symp. on Nonlinear Constitutive Relations for High-Temp Applications, Cleveland, Ohio, June 1984.

    Google Scholar 

  14. W. B. Jones, R. W. Rohde and J. C. Swearengen, in Mechanical Testing for Deformation Model Development, ed. R. W. Rhode and J. C. Swearengen, ASTM STP 765, 1982, p. 102.

    Chapter  Google Scholar 

  15. P. R. Swann, in Electron Microscopy and Strength of Crystals, ed. G. Thomas and J. Washburn, Interscience, New York, 1963, p. 131.

    Google Scholar 

  16. A. Kelly, Acta Cryst., 7 (1954) 554.

    Article  CAS  Google Scholar 

  17. T. Svensson, Plasticity of metals: stress, strain, and structure, Research Inst, of National Defence (Sweden) FOA, Report C 20467 - D4, Sept. 1982.

    Google Scholar 

  18. H. McQueen, Metall. Trans., A8 (1977) 807.

    Article  Google Scholar 

  19. M. R. Staker and D. L. Holt, Acta Metall., 20 (1972) 569.

    Article  CAS  Google Scholar 

  20. E. U. Lee, H. H. Kranzlein and E. E. Underwood, Mat. Sei. Eng., 7 (1971) 348.

    Article  CAS  Google Scholar 

  21. O. D. Sherby, R. H. Klundt and A. K. Miller, Metall. Trans., A8 (1971) 843.

    Google Scholar 

  22. P. A. Beck, B. G. Ricketts and A. Kelly, Trans TMS-AIME, 215 (1959) 949.

    CAS  Google Scholar 

  23. J. K. Dienes, Acta Mech., 32 (1979) 217.

    Article  Google Scholar 

  24. W. A. Spitzig and O. Richmond, Acta Metall., 32 (1984) 457.

    Article  CAS  Google Scholar 

  25. C. N. Ahlquist and W. D. Nix, Acta Metall., 19 (1971) 373.

    Article  Google Scholar 

  26. W. B. Jones and R. W. Rohde, in Novel Techniques in Metal Deformation Testing, ed. R. H. Wagoner, TMS-AIME, New York, 1983, p. 373.

    Google Scholar 

  27. G. Konig and W. Blum, Acta Metall., 25 (1977) 1531.

    Article  Google Scholar 

  28. W. Blum and A. Finkel, Acta Metall., 30 (1982) 1705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers LTD

About this chapter

Cite this chapter

Krieg, R.D., Swearengen, J.C., Jones, W.B. (1987). A Physically Based Internal Variable Model for Rate Dependent Plasticity. In: Miller, A.K. (eds) Unified Constitutive Equations for Creep and Plasticity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3439-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3439-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8039-2

  • Online ISBN: 978-94-009-3439-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics