An Overview on Studies of Stress State Effects During Creep of Circumferentially Notched Bars

  • D. R. Hayhurst
  • G. A. Webster


Failure by excessive creep deformation or fracture is an important design consideration in structures which are required to operate at elevated temperatures over long periods of time. Often these components are subjected to triaxial states of stress resulting from the mode of loading or from sharp changes in sections which cause local stress concentrations. In order to determine useful component lifetimes in such circumstances, laws governing material behaviour under multiaxial stressing are needed. Of particular concern are states of triaxial tension since these inhibit deformation, enhance fracture processes, and can cause premature failure.


Effective Stress Creep Strain Stress Redistribution Creep Rupture Creep Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Faddagh, K. D. (1983) Influence of state of stress on creep failure. Ph.D. thesis, Imperial College, London University.Google Scholar
  2. Al-Faddagh, K. D., Fenner, R. T. and Webster, G. A. (1982) Steady-state stress distributions in circumferentially notched bars subjected to creep. J. Strain Analysis, 17, 123–32.CrossRefGoogle Scholar
  3. Al-Faddagh, K. D. Webster, G. A. and Dyson, B. F. (1984) The influence of state of stress on creep failure of 2 1/2%Cr, 1%Mo steel. Mechanical Behaviour of Materials, IV Vol. 2, J. Carlsson and N. G. Ohlson (Eds), Pergamon Press, Oxford, pp. 289–95.Google Scholar
  4. Bressers, J., Van Der Biest, O. and Tambuyser, P. (1981) Analysis of the causes of scatter in stress rupture properties of a nickel-base super-alloy. Proc. Int. Conf on Creep and Fracture of Engineering Materials and Structures, Swansea, March 1981, B. Wilshire and D. R. J. Owen (Eds), Pineridge Press, Swansea.Google Scholar
  5. Bridgman, P. W. (1952) Studies in Large Plastic Flow and Fracture. McGraw Hill, New York.Google Scholar
  6. British Standards (1969). Methods for creep rupture testing of metals. BS3500, part 1.Google Scholar
  7. Brown, W. F., Manson, S. S., Sachs, G. and Sessler, J. G. (1959) Literature survey on influence of stress concentrations at elevated temperatures. A.S. T.M., S.T.P., 260.Google Scholar
  8. Calladine, C. R. (1969) Time scales for redistribution of stress in creep of structures. Proc. R. Soc. Lond., A309, 363–75.CrossRefGoogle Scholar
  9. Chubb, E. J. and Bolton, G. J. (1980) Stress state dependence of creep deformation and fracture in AISI type 316 stainless steel. Proc. Int. Conf. on Engng Aspects of Creep, Sheffield, Sep. 1980, Vol. 1, Institute of Mechanical Engineers, London, Paper C201 /80, pp. 48–61.Google Scholar
  10. Cocks, A. C. F. and Ashby, M. F. (1980) Intergranular fracture during power- law creep under multi-axial stresses. Metal Sci, 14, 395–402.CrossRefGoogle Scholar
  11. Dyson, B. F. and Loveday, M. (1981) Creep fracture in Nimonic 80A under tri-axial tensile stressing. Creep in Structures, I.U.T.A.M. Symposium, Leicester, 1980, A. R. S. Ponter and D. R. Hayhurst (Eds), Springer-Verlag, Berlin, pp. 406–21.Google Scholar
  12. Dyson, B. F. and Mclean, D. (1977) Creep of Nimonic 80A in torsion and tension. Metal Sci., 11, 37–45.CrossRefGoogle Scholar
  13. Goodall, I. W. and Ainsworth, R. A. (1977) Failure of structures by creep. Proc. 3rd Int. Conf. Pressure Vessel Technology, Tokyo, 1977, Vol. II, American Society of Mechanical Engineers, pp. 871–85.Google Scholar
  14. Greenwood, G. (1973) Creep life and ductility. Proc. Int. Conf. on Metals; Microstructure and the Design of Alloys, Vol. 2, Cambridge, pp. 91–105.Google Scholar
  15. Hayhurst, D. R. (1970) Isothermal creep deformation and rupture of structures. Ph.D. thesis, Cambridge University.Google Scholar
  16. Hayhurst, D. R. (1972) Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids, 20, 381–90.CrossRefGoogle Scholar
  17. Hayhurst, D. R. (1973) Stress redistribution and rupture due to creep in a uniformly stretched thin plate containing a circular hole. J. appl. Mech., 40, 244–50.CrossRefGoogle Scholar
  18. Hayhurst, D. R. (1974) The effects of test variables on scatter in high temperature tensile creep rupture data. Int. J. Mech. Sci., 16, 829–41.CrossRefGoogle Scholar
  19. Hayhurst, D. R. (1979) Recent developments in high temperature design methods. Chartered Mechanical Engineer, 26, 73–6.Google Scholar
  20. Hayhurst, D. R. and Henderson, J. T. (1977) Creep stress redistribution in notched bars. Int. J. Mech. Sci., 19, 133–46.CrossRefGoogle Scholar
  21. Hayhurst, D. R., and Storakers, B. (1976) Creep rupture of the Andrade shear disc. Proc. R. Soc. Lond., A 349, 369–82.CrossRefGoogle Scholar
  22. Hayhurst, D. R., Dimmer, P. R. and Chernuka, M. W. (1975) Estimates of the creep rupture lifetime of structures using the finite element method. J. Mech. Phys. Solids, 23, 335–55.CrossRefGoogle Scholar
  23. Hayhurst, D. R., Dimmer, P. R. and Morrison, C. J. (1984) Development of continuum damage in the creep rupture of notched bars, Phil. Trans. R. Soc. Lond., A311, 103–29.CrossRefGoogle Scholar
  24. Hayhurst, D. R., Leckie, F. A. and Morrison, C. J. (1978) Creep rupture of notched bars, Proc. R. Soc. Lond., A 360, 243–64.Google Scholar
  25. Hayhurst, D. R., Trampczynski, W. A. and Leckie, F. A. (1983) On the role of cavity nucleation in creep deformation and fracture. Acta Metall, 31, 1537–42.CrossRefGoogle Scholar
  26. Johnson, A. E., Henderson, J. and Khan, B. (1962) Complex-stress Creep, Relaxation and Fracture of Metallic Alloys. HMSO, Edinburgh.Google Scholar
  27. Kachanov, L. M. (1958) Time of the fracture process under creep conditions. Izo. Akad. Nauk. SSSR Ots. Teck. Nauk, 8, 26–31.Google Scholar
  28. Leckie, F. A. (1978) The constitutive equations of continuum creep damage mechanics. Phil. Trans. R. Soc. Lond., A288, 27–47.CrossRefGoogle Scholar
  29. Leckie, F. A. and Hayhurst, D. R. (1974) Creep rupture of structures. Proc. R. Soc. Lond., A340, 323–47.CrossRefGoogle Scholar
  30. Leckie, F. A. and Hayhurst, D. R. (1977) Constitutive equations for creep rupture. Acta Metall., 25, 1059–70.CrossRefGoogle Scholar
  31. Loveday, M. S. and Dyson, B. F. (1979) Creep deformation and cavitation damage in Nimonic 80A under tri-axial tensile stress. Proc. I.C.M. 3; Mechanical Behaviour of Materials, Vol. 2, K. J. Miller and R. F. Smith (Eds), Pergamon Press, Oxford, pp. 213–22.Google Scholar
  32. Manjoine, M. J. (1962) Size effect on notched rupture time. Trans., A.S.M.E. J. Basic Eng., 84, 220–1.Google Scholar
  33. Mckenzie, A. C. and Moakler, M. (1973) On the relaxation of residual stress fields by thermal stress relief. Proc. 2nd Int. Conf. on Pressure Vessel Technol., San Antonio, Texas, American Society of Mechanical Engineers, pp. 1167–78.Google Scholar
  34. Ng, S. E., Webster, G. A. and Dyson, B. F. (1981) Notch weakening and strengthening in creep of 1/2%Cr, 1/2%Mo, 1/4%V steel. Proc. I.C.F. 5; Advances in Fracture Research, Vol. 3, D. Francois (Ed.), Pergamon Press, Oxford, pp. 1275–83.Google Scholar
  35. Odqvist, F. K. G. (1974) Mathematical Theory of Creep and Creep Rupture, 2nd edn., Chap. 12. Clarendon Press, Oxford.Google Scholar
  36. Odqvist, F. K. G. and HULT, J. (1961) Some aspects of creep rupture. Ark. Fys., 19, 379–82.Google Scholar
  37. Penny, R. K. and Hayhurst, D. R. (1969) The deformations and stresses in a stretched thin plate-containing a hole during stress redistribution caused by creep, Int. J. Mech. Sci., 11, 23–39.CrossRefGoogle Scholar
  38. Penny, R. K. and Hayhurst, D. R. (1969) The deformations and stresses in a and strain measurement in axial creep tests. Materials Research and Standards, 6, 76–84.Google Scholar
  39. Rice, J. R. and Tracey, D. M. (1969) On the ductile enlargement of voids in tri- axial stress field. J. Mech. Phys. Solids, 17, 201–17.CrossRefGoogle Scholar
  40. Robinson, E. L. (1952) Effect of temperature variation on the long-time rupture strength of steels. Trans. Am. Soc. Mech. Engrs, 74, 777–80.Google Scholar
  41. Webster, G. A. (1971) Creep rupture of plain and notched specimens of an aluminium alloy. Proc. 4th Conf. on Dimensioning, Hungarian Academy of Science, pp. 241–50.Google Scholar

Copyright information

© Elsevier applied Science Publishers Ltd 1986

Authors and Affiliations

  • D. R. Hayhurst
    • 1
  • G. A. Webster
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of SheffieldUK
  2. 2.Department of Mechanical EngineeringImperial CollegeLondonUK

Personalised recommendations