Skip to main content
  • 248 Accesses

Abstract

Homogenization methods using change of scale by spatial convolution provide a useful framework for a mechanical description of complex heterogeneous media such as saturated soils. The principle is recalled and general balance equations in Eulerian form are established for each constituent of a multiphase medium by starting from the corresponding balance equations valid at the local level (grains scale). Particular attention is devoted to the description of essential features of the geometry of such media and to the precise physical meaning of the various terms involved. Interaction terms appear quite naturally. The previously introduced notions are applied to saturated soils. It is shown how to define in a consistent way the apparent viscosity and effective stress tensors and an average fluid pressure. Filtration velocity is introduced and the apparent viscosity stress tensor is related to its variations when the solid part is at rest. Buoyancy force is calculated and Darcy’s law is introduced for two particular known cases of interest. Possibilities and actual limitations of the method are pointed out, as well as a few connections with other approaches.

Résumé

Les méthodes d’homogénéisation utilisant un changement d’échelle par convolution spatiale fournissent un cadre utile pour la description mécanique des milieux hétérogènes complexes tels que les sols saturés. Après avoir rappelé le principe, nous établissons la forme eulérienne des équations de bilan pour chaque constituant d’un milieu polyphasique à partir des équations de bilan correspondantes valables au niveau local (échelle des grains). Nous décrivons précisément la géométrie de tels milieux et donnons la signification physique des différents termes, y compris les termes d’interaction entre constituants, qui apparaissent naturellement. L’application des notions précédentes est faite au cas des sols saturés. Nous montrons comment définir logiquement les tenseurs de contrainte effective et de viscosité apparente ainsi que la pression moyenne du fluide. La vitesse de filtration est introduite et le tenseur de viscosité apparente est relié à ses variations dans le cas où le solide est immobile. La force de flottabilité est calculée et la loi de Darcy introduite pour deux cas particuliers connus intéressants. Nous indiquons les possibilités et les limitations actuelles de la méthode, ainsi qu’un certain nombre de liens avec d’autres approches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadi, G. (1980). On mechanics of saturated granular materials, Int. J. Non-lin. Mech. 15, 251–62.

    Article  Google Scholar 

  • Ahmadi, G. and Shahinpoor, M. (1983). A continuum theory for fully saturated porous elastic materials, Int. J. Non-lin. Mech., 18, 223–34.

    Article  Google Scholar 

  • Auriault, J. L. (1980). Dynamic behaviour of a porous medium saturated by a newtonian fluid, Int. J. Eng. Sci., 18, 775–85.

    Article  Google Scholar 

  • Auriault, J. L. and Sanchez-Palencia, E. (1977). Etude du comportement macroscopique d’un milieu poreux saturé déformable, J. Mécan. 16, 576–603.

    Google Scholar 

  • Avallet, C. (1981). Comportement dynamique de milieux poreux saturés déformables; thèse, Grenoble.

    Google Scholar 

  • Batchelor, G. K. (1974). Transport properties of two-phase materials with random structure, Ann. Rev. Fluid Mech., 6, 227–55.

    Article  Google Scholar 

  • Bedford, A. and Drumheller, D. S. (1983). Theories of immiscible and structured mixtures, Int. J. Eng. Sci., 21, 863–960.

    Article  Google Scholar 

  • Bensoussan, A., Lions, J. L. and Papanicolaou, G. (1978). Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.

    Google Scholar 

  • Biot, M. A. (1962a). Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482–98.

    Google Scholar 

  • Biot, M. A. (1962b), Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 34, 1254–64.

    Google Scholar 

  • Biot, M. A. (1977). Variational lagrangian thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Struct., 13, 579–97.

    Article  Google Scholar 

  • Borne, L. (1983). Contribution à l’étude du comportement dynamique des milieux poreux saturés déformables: étude de la loi de filtration dyna-mique; thesis, Grenoble.

    Google Scholar 

  • Bowen, R. M. (1976). Theory of mixtures. In Continuum Physics, Vol. 3, A. C. Eringen (Ed.), Academic Press, New York.

    Google Scholar 

  • Coudert, J. F. (1973). Théorie macroscopique des écoulements multiphasiques en milieu poreux, Rev. Inst. Franç. Pétrol., 28, 171–83, 373–98.

    Google Scholar 

  • Coussy, O. and Bourbie, T. (1984). Propagation des ondes acoustiques dans les milieux poreux saturés, Rev. Inst. Franç. Pétrol., 39, 47–66.

    Google Scholar 

  • Ene, H. I. and Melicescu-Receanu, M. (1984). On the viscoelastic behaviour of a porous saturated medium, Int. J. Eng. Sci., 22, 243–6.

    Article  Google Scholar 

  • Ene, H. I. and Sanchez-Palencia, E. (1975). Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux, J. Mécan., 14, 73–108.

    Google Scholar 

  • Estrada, R. and Kanwal, R. P. (1980). Applications of distributional deriva-tives to wave propagation, J. Inst. Math. Appl., 26, 39–63.

    Article  Google Scholar 

  • Gilbert, F. (1984). Description des sols saturés par une méthode d’homogénéisation, Ecole d’Hiver CNRS-IMG Rhéologie des Géomatériaux, Aussois, France, 33 pp.

    Google Scholar 

  • Gray, W. G. and O’Neill, K. (1976). On the general equations for flow in porous media and their reduction to Darcy’s law, Water Resources Res., 12, 148–54.

    Article  Google Scholar 

  • Hadj-Hamou, A. (1983). Contribution à l’étude du comportement des sols pulvérulents sous chargements cyclique et dynamique; thesis, ENPC, Paris.

    Google Scholar 

  • Hassanizadeh, M. (1979). Macroscopic description of multi-phase systems: a thermodynamic theory of flow in porous media; PhD. thesis, Princeton.

    Google Scholar 

  • Marle, C. M. (1965). Application des méthodes de la thermodynamique des processus irréversibles à l’écoulement d’un fluide à travers un milieu poreux, Bull. RILEM (nouvelle série), 29, 107–17.

    Google Scholar 

  • Marle, C. M. (1967). Ecoulements monophasiques en milieu poreux, Rev. Inst. Franç. Pétrol., 22, 1471–1509.

    Google Scholar 

  • Marle, C. M. (1982). On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media, Int. J. Eng. Sci., 20, 643–62.

    Article  CAS  Google Scholar 

  • Matheron, G. (1965). Les variables régionalisées et leur estimation; thesis, Paris.

    Google Scholar 

  • Matheron, G. (1967). Eléments pour une Théorie des Milieux Poreux, Masson, Paris.

    Google Scholar 

  • Müller, I. (1975). Thermodynamics of mixtures of fluids, J. Mécan., 14, 267–303.

    Google Scholar 

  • Prévost, J. H. (1980). Mechanics of continuous porous media, Int. J. Eng. Sei., 18, 787–800.

    Article  Google Scholar 

  • Sanchez-Palencia, E. (1974). Comportement local et macroscopique d’un type de milieux physiques hétérogènes, Int. J. Eng. Sei., 12, 331–51.

    Article  Google Scholar 

  • Sanchez-Palencia, E. (1980). Non-homogeneous Media and Vibration Theory (Lecture notes in physics, 127), Springer.

    Google Scholar 

  • Serra, J. (1982). Image Analysis and Mathematical Morphology, Academic Press.

    Google Scholar 

  • Slattery, J. C. (1967). Flow of viscoelastic fluids through porous media, AIChEJ., 13, 1066–71.

    Article  Google Scholar 

  • Slattery, J. C. (1969). Single-phase flow through porous media, AIChE J., 15, 866–72.

    Article  CAS  Google Scholar 

  • Slattery, J. C. (1972). Momentum, Energy and Mass Transfer in Continua, McGraw-Hill.

    Google Scholar 

  • Truesdell, C. and Toupin, R. A. (I960). The classical field theory. In Handbuch der Physik, III, 1, S. Flügge (Ed.), Springer.

    Google Scholar 

  • Whitaker, S. (1969). Advances in theory of fluid motion in porous media, Ind. Eng. Chem., 61, 14–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Gilbert, F. (1986). A Mechanical Description of Saturated Soils. In: Gittus, J., Zarka, J., Nemat-Nasser, S. (eds) Large Deformations of Solids: Physical Basis and Mathematical Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3407-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3407-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8023-1

  • Online ISBN: 978-94-009-3407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics