Skip to main content

Fundamental Considerations in Micromechanical Modeling of Polycrystalline Metals at Finite Strain

  • Chapter

Abstract

Issues germane to the theoretical foundations of micromechanical modeling and analysis of metals at finite strain are investigated. Established concepts and results are concisely reviewed and integrated, and some new relationships, both general and specific, are obtained. The proof, by Hill and Havner (1982), that plastic potentials for individual crystal deformation depend solely upon Green elasticity of the underlying crystal lattice is presented afresh and extended to polycrystalline metals, using the averaging theorem of Hill (1972) and the aggregate model of Havner (1974). A specialization of the general theory for individual crystals is emphasized, corresponding to a postulated constitutive inequality that is invariant under change in strain measure and a saddle potential function for nominal stress rate. For the polycrystalline aggregate model, in addition to plastic potential laws, other macroscopic relationships are derived making use of the recent analysis in Hill (1984), Various equations for incremental work are presented that involve open questions requiring further research.

Résumé

Les fondations théoriques de la modelisation micromécanique et l’analyse des métaux en grandes déformations sont étudiées. Les concepts et les résultats classiques sont brièvement rapelés et des nouvelles relations, à la fois générales et particulières, sont obtenues. La démonstration de Hill et Havner (1982), que les potentiels plastiques pour la déformation du cristal individuel ne dépendent que de l’élasticité de Green du réseau cristallin, est présentée de nouveau et étendue aux polycristaux métalliques en utilisant le théorème de la moyenne de Hill (1972) et le modèle d’agrégats d’Havner (1974). Une spécialisation de la théorie générale pour les cristaux individuels est soulignée; elle correspond avec une inégalité constitutive postulée qui est invariante avec un chargement de la mesure des déformations et avec une fonction-selle potentielle pour la vitesse des contraintes nominales. Pour le modèle de l’agrégat polycristallin, en plus des lois de potentiel plastique, d’autres relations macroscopiques sont déduites à partir de la récente analyse de Hill (1984). Diverses équations pour le travail incrémental sont présentées; elles impliquent des questions ouvertes pour des recherches futures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Drucker, D. C. (1950). Some implications of work hardening and ideal plasticity, Q. Appl. Math., 7, 411.

    Google Scholar 

  • Havner, K. S. (1973). On the mechanics of crystalline solids, J. Mech. Phys. Solids, 21, 383.

    Article  Google Scholar 

  • Havner, K. S. (1974). Aspects of theoretical plasticity at finite deformation and large pressure, Z. Angew. Math. Phys., 25, 765.

    Article  Google Scholar 

  • Havner, K. S. (1977). On uniqueness criteria and minimum principles for crystalline solids at finite strain, Acta Mech., 28, 139.

    Article  Google Scholar 

  • Havner, K. S. (1981). A theoretical analysis of finitely deforming fee crystals in the sixfold symmetry position, Proc. Roy. Soc. (Lond.), A378, 329.

    Article  CAS  Google Scholar 

  • Havner, K. S. (1982). The theory of finite plastic deformation of crystalline solids. In Mechanics of Solids (Rodney Hill 60th Anniv. Vol.), H. G. Hopkins and M. I. Sewell (Eds), Pergamon Press, Oxford, p. 265.

    Google Scholar 

  • Havner, K. S. (1985). Comparisons of crystal hardening laws in multiple slip, Int. J. Plasticity, 1, 111.

    Article  Google Scholar 

  • Havner, K. S. and Shalaby, A. H. (1977). A simple mathematical theory of finite distortional latent hardening in single crystals, Proc. Roy. Soc. (Lond.), A358, 47.

    Article  CAS  Google Scholar 

  • Havner, K. S. and Singh, C. (1977). Application of a discrete polycrystal model to the analysis of cyclic straining in copper, Int. J. Solids Struct., 13, 395.

    Article  Google Scholar 

  • Havner, K. S. and Varadarajan, R. (1973). A quantitative study of a crystalline aggregate model, Int. J. Solids Struct., 9, 379.

    Article  Google Scholar 

  • Havner, K. S., Singh, C. and Varadarajan, R. (1974). Plastic deformation and latent strain energy in a polycrystalline aluminum model, Int. J. Solids Struct., 10, 853.

    Article  Google Scholar 

  • Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids, 7, 209.

    Article  Google Scholar 

  • Hill, R. (1966). Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids, 14, 95.

    Article  CAS  Google Scholar 

  • Hill, R. (1968). On constitutive inequalities for simple materials, I. J. Mech. Phys. Solids, 16, 229.

    Article  Google Scholar 

  • Hill, R. (1971). On macroscopic measures of plastic work and deformation in micro-heterogeneous media, J. Appl. Math. Mech., 35, 11 (English version of Prikl. Mat. Mekh., 35, 31 ).

    Google Scholar 

  • Hill, R. (1972). On constitutive macro-variables for heterogeneous solids at finite strain, Proc. Roy. Soc. (Lond.), A326, 131.

    Google Scholar 

  • Hill, R. (1978). Aspects of invariance in solid mechanics. In Advances in Applied Mechanics, Vol. 18, C.-S. Yih (Ed.), Academic Press, New York, p. 1.

    Google Scholar 

  • Hill, R. (1984). On macroscopic effects of heterogeneity in elastoplastic media at finite strain, Math. Proc. Comb. Phil. Soc., 95, 481.

    Article  Google Scholar 

  • Hill, R. and Havner, K. S. (1982). Perspectives in the mechanics of elastoplastic crystals, J. Mech. Phys. Solids, 30, 5.

    Article  CAS  Google Scholar 

  • Hill, R. and Rice, J. R. (1972). Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401.

    Article  Google Scholar 

  • Hill, R. and Rice, J. R. (1973). Elastic potentials and the structure of inelastic constitutive laws, SIAM J. Appl. Math., 25, 448.

    Article  Google Scholar 

  • Ilyushin, A. A. (1961). On the postulate of plasticity, Prikl. Mat. Mekh., 25, 503.

    Google Scholar 

  • Mandel, J. (1965). Généralisation de la théorie de plasticité de W. T. Koiter, Int. J. Solids Struct, 1, 273.

    Article  Google Scholar 

  • Mandel, J. (1966). Contribution théorique à létude de Pécrouissage et des lois de l’écoulement plastique, Proc. llth Int. Congr. Appl. Mech. (Munich, 1964 ), H. Görtler (Ed.), Springer-Verlag, Berlin, p. 502.

    Google Scholar 

  • Mandel, J. (1982). Définition d’un repère privilégié pour l’étude des transfor-mations anélastiques du polycristal, J. Méc. Théor. Appl., 1, 7.

    Google Scholar 

  • Rice, J. R. (1971). Inelastic constitutive relations for solids: an internai- variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433.

    Article  Google Scholar 

  • Sewell, M. J. (1972). A survey of plastic buckling. In Stability, H. Leipholz ( Ed. ), University of Waterloo Press, p. 85.

    Google Scholar 

  • Sewell, M. J. (1974). On applications of saddle-shaped and convex generating functionals. In Physical Structure in Systems Theory, J. J. van Dixhoorn and F. J. Evans (Eds), Academic Press, London, p. 219.

    Google Scholar 

  • Sue, P. L. and Havner, K. S. (1984). Theoretical analysis of the channel die compression test, I. J. Medi. Phys. Solids, 32, 417.

    Article  Google Scholar 

  • Taylor, G. I. and Elam, C. F. (1923). The distortion of an aluminium crystal during a tensile test, Proc. Roy. Soc. (Lond.), A102, 643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Havner, K.S. (1986). Fundamental Considerations in Micromechanical Modeling of Polycrystalline Metals at Finite Strain. In: Gittus, J., Zarka, J., Nemat-Nasser, S. (eds) Large Deformations of Solids: Physical Basis and Mathematical Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3407-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3407-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8023-1

  • Online ISBN: 978-94-009-3407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics