Skip to main content

Abstract

The modelling of the inelastic deformation of metals requires consideration of their microstructure. The homogenization techniques currently employed for the macroscopic description of the microstructure focus generally on the averaging over all grains of a polycrystal, frequently oversimplifying the structural rearrangement within the grains. In addition, these techniques do not lead yet to sufficiently manageable models to be included in the analysis of structural elements. It therefore seems desirable to supplement this quantitative micro-macro transition by a less rigorous but more flexible heuristic approach, aiming at injecting into phenomenological models the microstructural information that seems to be most relevant for a certain class of materials and deformation processes. The present chapter begins by setting forth this kind of approach within the general framework of the models with internal state variables. Subsequently the procedure is illustrated by some typical examples concerning hot working, deep drawing, plastic deformation of single crystals, and anisotropic hardening.

Résumé

La modélisation de la déformation non-élastique des métaux exige la prise en compte de leur réalité microscopique. Les techniques d’homogénéisation couramment utilisées pour la description macroscopique de la microstructure concernent surtout le calcul des moyennes sur les différentes orientations des grains, en simplifiant parfois d’une manière trop sommaire l’évolution de la microstructure à l’interieur des grains. De plus, ces techniques ne conduisent pas encore à des modèles assez maniables pour qu’ils puissent être utilisés en calcul de structure. Il est par conséquent souhaitable de développer, à coté de ces approches quantitatives de passage micro-macro, une démarche plutôt heuristique, moins exigeante mais plus souple, permettant d’injecter dans des modèles phénoménologiques les informations microstructurales qui sont jugées les plus significatives pour une certaine classe de matériaux et de processus de déformation. Le présent travail situe cette démarche dans le cadre général des modèles à variables internes d’état et propose pour son illustration quelques exemples représentatifs, concernant notamment le formage à chaud, l’emboutissage, la déformation plastique des monocristaux et l’écrouissage anisotrope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arminjon, M. (1981). Contributions à l’étude des relations entre les paramètres d’anisotropic plastique et les fonctions de répartition des orientations cristallographiques des polycristaux métalliques; thesis, Uni¬versity of Grenoble.

    Google Scholar 

  • Arminjon, M. (1984). Explicit relationships between texture coefficients and three-dimensional yield criteria of metals, Proc. ICOTOM 7 (Aachen, 1978 ), Netherlands Soc. Mat. Sei., p. 31.

    Google Scholar 

  • Berveiller, M., Hihi, A. and Zaoui, A. (1985). Self-consistent schemes for the plasticity of polycrystalline and multiphase materials. In Strength of Metals and Alloys, H. J. McQueen et al (Eds) (ICSMA 7, Montreal, 1985), Pergamon Press, Oxford, Vol. 1, p. 145.

    Google Scholar 

  • Bishop, J. F. W. and Hill, R. (1951). A theoretical derivation of the plastic properties of polycrystalline face-centred metal, Phil Mag., 42, 1298.

    CAS  Google Scholar 

  • Budiansky, B. and Wu, T. T. (1962). Theoretical prediction of plastic strains of polycrystals, Proc. 4th US Nat. Congr. Appl. Mech., p. 1175.

    Google Scholar 

  • Carlson, D. E. (1972). Linear thermoelasticity. In Handbuch der Physik, S. Flügge and C. Truesdell (Eds), Springer, Berlin, Vol. VIa/2, p. 297.

    Google Scholar 

  • Coleman, B. D. and Gurtin, M. E. (1967). Thermodynamics with internal state variables, J. Chem. Phys., 47, 597.

    Article  CAS  Google Scholar 

  • Dafalias, Y. F. (1985). A missing link in the macroscopic constitutive formulation of large plastic deformations. In Plasticity Today, A. Sawczuk and G. Bianchi (Eds), Elsevier Applied Science Publishers, London, p. 135.

    Google Scholar 

  • Fernandes, J. V. and Schmitt, J. H. (1983). Dislocation microstructures in steel during deep drawing, Phil. Mag., A48M, 841.

    Google Scholar 

  • Germain, P. (1973). Cours de Mécanique des Milieux Continus, Vol. 1, Masson, Paris, pp 147 - 58.

    Google Scholar 

  • Halphen, B. (1975). Sur le champ des vitesses en thermoplasticité finie, Int. J. Solids Struct., 11, 947.

    Article  Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. ( London ), A193, 281.

    Google Scholar 

  • Hill, R. and Rice, J. R. (1973). Elastic potentials and the structure of the inelastic constitutive laws, Siam J. Appl. Math., 25, 448.

    Article  Google Scholar 

  • Honeff, H. and Mecking, H. (1978). A method for the determination of the active slip systems and orientation changes during single crystal deforma¬tion, Proc. ICOTOM 5 (Noordwijkerhout, 1984), G. Gottstein and K. Lücke (Eds), Springer, Berlin, Vol. 1, p. 265.

    Google Scholar 

  • Kocks, U. F. and Canova, G. R. (1981). How many slip systems, and which? In Deformation of Polycrystals (2nd Risø Int. Symp. on Metallurgy and Mat. Sci., Roskilde, 1981), N. Hansen et al. (Eds), Risø National Laboratory, Denmark, p. 35.

    Google Scholar 

  • Kratochvil, J. (1972). On a finite strain theory of elastic-inelastic materials, Acta Mech., 2, 307.

    Google Scholar 

  • Kröner, E. (1961). Zur plastischen Verformung des Vielkristalls, Acta Metall., 9, 155.

    Article  Google Scholar 

  • Lee, D. and Zaverl, F. Jr (1978). A generalized strain rate dependent constitutive equation for anisotropic metals, Acta Metall., 26, 1771.

    Article  CAS  Google Scholar 

  • Lee, E. H. (1969). Elastic-plastic deformation at finite strains, J. Appl Mech., 36, 1.

    Google Scholar 

  • Lequeu, Ph., Montheillet, F. and Jonas, J. J. (1985). A simplified method for describing plastic anisotropy. In Strength of Metals and Alloys, H. J. McQueen et al. (Eds) (ICSMA 7, Montreal, 1985), Pergamon Press, Oxford, Vol. 1, p. 269.

    Google Scholar 

  • Mandel, J. (1972). Plasticité Classique et Viscoplasticité (course given at Int. Centre for Mech. Sci., Udine, 1971), Springer.

    Google Scholar 

  • Mandel, J. (1977). Equations de comportement d’un système élastoviscoplastique dont l’écrouissage est dû à des contraintes résiduelles, Compt. Rend. Acad. Sci. ( Paris ), A284, 257.

    Google Scholar 

  • Miller, A. K. (1976). An inelastic constitutive model for monotonie, cyclic, and creep deformation, ASME J. Eng. Mat. Techn., 96, 97, 106.

    Article  Google Scholar 

  • Miller, A. K. (1977). Progress in modeling of zircaloy nonelastic deformation using a unified phenomenological model. In Zirconium in the Nuclear Industry, A. L. Lowe, Jr and G. W. Parry (Eds), ASTM STP633, p. 523.

    Google Scholar 

  • Miller, A. K. and Sherby, O. D. (1978). A simplified phenomenological model for non-elastic deformation: predictions of pure aluminium behavior and incorporation of solute strengthening effects, Acta Metall, 26, 289.

    Article  CAS  Google Scholar 

  • Moreau, J. J. (1971). Rafle par un convexe variable (séminaire d’analyse convexe, Montpellier).

    Google Scholar 

  • Nguyen, Q. S. (1973). Contribution à la théorie macroscopique de l’élastoplasticité avec écrouissage; thesis, University of Paris.

    Google Scholar 

  • Nguyen, Q. S. and Halphen, B. (1973). Sur les lois de comportement élasto-visco-plastique à potentiel généralisé, Compt. Rend. Acad. Sci. ( Paris ), A277, 319.

    Google Scholar 

  • Rice, J. R. (1970). On the structure of stress-strain relations for time- dependent plastic deformation in metals, Trans. ASME, J. Appl. Mech., 37, 728.

    Google Scholar 

  • Rice, J. R. (1971). Inelastic constitutive relations for solids: an internai- variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433.

    Article  Google Scholar 

  • Rice, J. R. (1975). Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In Constitutive Equations in Plasticity, A. S. Argon (Ed.), MIT Press, Cambridge, Mass., Ch. 2, p. 23.

    Google Scholar 

  • Rondé-Oustau, F. and Baudelet, B. (1977). Microstructure and strain path in deep drawing, Acta Metall., 25, 1523.

    Article  Google Scholar 

  • Sah, J. P. and Sellars, C. M. (1980). Effect of deformation history on static recrystallization and restoration in ferritic stainless steel. In Hot Working and Forming Processes, C. M. Sellars and G. J. Davies (Eds), Metals Soc., London, p. 62.

    Google Scholar 

  • Sidoroff, F. (1976). Variables internes en viscoélasticité et plasticité; thesis, Pierre and Marie Curie University, Paris.

    Google Scholar 

  • Sidoroff, F. (1982). Influence du trajet de chargement sur l’écrouissage: une modélisation; rapport GRECO: Grandes déformations et endommage- ment, No. 64 /1982.

    Google Scholar 

  • Taylor, G. I. (1938). Plastic strain in metals, J. Inst. Met., 62, 307.

    Google Scholar 

  • Teodosiu, C. (1970). A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum. In Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. deWit and R. Bullough (Eds) (Washington, 1969), NBS Spec. Publ. 317, Vol. 2, p. 837.

    Google Scholar 

  • Teodosiu, C. (1975). A physical theory of the finite elastic-viscoplastic behaviour of single crystals, Eng. Trans., 23, 151.

    Google Scholar 

  • Teodosiu, C. and Sidoroff, F. (1976). A theory of finite elastoviscoplasticity of single crystals, Int. J. Eng. Sci., 14, 165.

    Article  Google Scholar 

  • Teodosiu, C., Nicolae, V., Soôs, E. and Radu, C. G. (1979). Viscoplastic behaviour of the AISI 316L austenitic stainless steel under hot working conditions, Rev. Roum. Sci. Techn.-Méc. Appl., 24, 13, 225.

    Google Scholar 

  • Teodosiu, C., Soôs, E. and Rosu, I. (1984). A finite element model of the hot working of axially symmetric products. II. Determination of the velocity and temperature fields during hot extrusion, Rev. Roum. Sci. Techn.-Méc. Appl., 29.

    Google Scholar 

  • Van Houtte, P. (1981). Adaptation of the Taylor theory to the typical substructure of some cold-rolled fee metals, Proc. ICOTOM 6 (Tokyo, 1981), S. Nagashima (Ed.), The Iron and Steel Inst. Japan, Vol. 1, p. 428.

    Google Scholar 

  • Williams, J. F. and Svensson, N. L. (1971). A rationally based yield criterion for work hardening materials, Meccanica, 6, 104.

    Article  Google Scholar 

  • Zaoui, A. (1972). Etude de l’influence propre de la désorientation des grains sur le comportement viscoplastique des métaux polycristallins; thesis, Faculty of Sciences, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Sidoroff, F., Teodosiu, C. (1986). Microstructure and Phenomenological Models for Metals. In: Gittus, J., Zarka, J., Nemat-Nasser, S. (eds) Large Deformations of Solids: Physical Basis and Mathematical Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3407-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3407-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8023-1

  • Online ISBN: 978-94-009-3407-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics