Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 14))

Abstract

Technetium-99, the only radiologically important environmental technetium isotope, decays by beta emission with a maximum energy of 0.292 MeV and a specific activity of 0.63 TBq Kgāˆ’1 (TBq = 1012 Bq). The maximum yield from thermal neutron fission of U-235 is 6.06%. Several mechanisms exist for producing Tc-99 apart from direct fission. Whether Tc-99 is a waste problem depends on: The quantities in which the radionuclide is produced The amounts released to the environmenthe environmental behaviour, i.e. how easy is Tc transferred to man. The dose factor: Sievert pr Bq ingested or inhaled by man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IAEA . Reference Data Series No. 2. Nuclear Power Reactors in the World. International Atomic Energy Agency, Vienna. 1984

    Google ScholarĀ 

  2. Till J E. Source terms for technetium-99 from nuclear fuel cycle facilities. In: Technetium in the Environment, Elsevier Applied Science Publishers, London & New York, 1984: 1ā€“20.

    Google ScholarĀ 

  3. Luykx F. Technetium Discharges into Environment. In: Technetium in the Environment, Elsevier Applied Science Publishers, London & New York, 1984: 21ā€“27.

    Google ScholarĀ 

  4. BNFL 1978ā€“85. Annual Report on Radioactive Discharges and Monitoring of Environment. British Nuclear Fuels Ltd, Risley Warrington, Cheshire, U.K.

    Google ScholarĀ 

  5. Aarkrog A, Boelskifte S, Dahlgaard H, Duniec S, Hallsta- dius L, Holm E, Smith JN. Technetium-99 and cesium-134 as long distance tracers in Arctic waters. Estuarine, Coastal and Shelf Science (In press) 1987.

    Google ScholarĀ 

  6. Harley J H. (Ed.). HASL procedures manual, HASL-300, Environmental Measurements Laboratory, U.S. Department of Energy, New York, 1987: 602.

    Google ScholarĀ 

  7. UNSCEAR : Ionizing Radiation: Sources and Biological Effects. United Nations Scientific Committee on the Effects of Atomic Radiation 1982 Report to the General Assembly. New York 1982: 773.

    Google ScholarĀ 

  8. Ennow, K . Personal communication. 1987.

    Google ScholarĀ 

  9. Wildung R E, Garland T R, Cataldo D A. Preliminary studies on the uptake of technetium by soybeans. In: Pacific Northwest Laboratory Annual Report for 1974 to the USAEC Division of Biomedical and Environmental Research, Part 2, Ecological Sciences, Batel1e-Northwest Laboratory, BNWL- 1950 PT2. 1974.

    Google ScholarĀ 

  10. Hoffman F0, Garten CT, Lucas DM, Huckabee JW. Environmental behaviour of technetium in soil and vegetation, implications for radiological assessments. Envir Sei Techno! 1982; 16: 214ā€“217

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Till J E, Shor R E, Hoffman F 0. Environmental Effects of the Uranium Fuel Cycle - A Review of Data for Technetium. NUREG/CR-3738, Oak Ridge, Tennessee, Oak Ridge National Laboratory. 1985.

    Google ScholarĀ 

  12. Thomas J M, Cadwell L L, Cataldo D A, Garland T R. Distribution of orally administered and chronically fed Tc-95m in Japanese quail tissues and eggs. In: Technetium in the Environment, Elsevier Applied Science Publishers, London & New York, 1984: 349ā€“357.

    Google ScholarĀ 

  13. IAEA . Sediment Kdā€™s and concentration factors for radionuclides in the marine environment. Techn. Rep. Ser. No.247, International Atomic Energy Agency, Vienna, 1984: 73.

    Google ScholarĀ 

  14. Quinault J, Grauby A. Estimations des Risques Radiologi- ques Lies Ƥ un Rejet Concerte de Technetium dans 1ā€™Environment. In: Technetium in the Environment, Elsevier Applied Science Publishers, London & New York, 1984: 377ā€“383.

    Google ScholarĀ 

  15. ICRP . Limits for intakes of radionuclides by workers. ICRP Publication 30. Pergamon Press, Oxford. 1979.

    Google ScholarĀ 

  16. Hoffman F0, Gardner RH, Bartell SM. The Significance of environmental exposure pathways for technetium. In: Technetium in the Environment, Elsevier Applied Science Publishers, London & New York. 1984: 359ā€“376.

    Google ScholarĀ 

  17. Holm E, Rioseco J, Garcia-Leon M. Determination of Tc-99 in environmental samples. Nuclear Instrumentation and Methods in Physics Research 1984; 223: 204ā€“207.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Aarkrog, A. (1987). TC-99 ā€” A Waste Problem?. In: Kristensen, K., NĆørbygaard, E. (eds) Safety and Efficacy of Radiopharmaceuticals 1987. Developments in Nuclear Medicine, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3375-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3375-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8016-3

  • Online ISBN: 978-94-009-3375-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics