Skip to main content

Assessment of the Kidney in Relation to Blood Pressure Regulation

  • Chapter
Nephrotoxicity in the experimental and clinical situation

Part of the book series: Developments in Nephrology ((DINE,volume 19-20))

  • 88 Accesses

Abstract

The kidney responds to wide variations in the external environment to maintain relatively constant ionic conditions around the cells. These changes in kidney function are aimed at maintaining homeostasis and can be brought about by several factors, the most important of which is a change in blood pressure. The interaction between the kidney and blood pressure is primarily mediated via changes in the excretory function of the kidney. Renal diseases, nephrotoxicity or experimental manipulations to the kidneys generally produce hypertension, but sometimes there are no changes in blood pressure. Such renal compromise very rarely leads to a decrease in blood pressure, and it can therefore be argued that if renal excretory function is impaired in any way, a compensatory increase in systemic arterial pressure will occur. Thus the kidney fulfils its homeostatic role at the expense of an increase in blood pressure. The “renal blood volume pressure regulatory system” or “the sodium homeostatic mechanism” fulfils such a role1. However the corollary of this is that renal dysfunction is the primary cause of hypertension, and this is one of the most enduring controversies of modern day pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guyton, A.C., Arterial Pressure and Hypertension, W.B. Saunders, Philadelphia, 1980.

    Google Scholar 

  2. Guyton, A.C., Coleman, T.G., Cowley, A.W., Jr., Scheel, K.W., Manning, R.D., Jr. and Norman, R.A., Jr., Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am. J. Med., 52, 584, 1972.

    PubMed  CAS  Google Scholar 

  3. Guyton, A.C., Manning, R.D., Lohmeier, T.E. and Hall, J.E., The kidney and hypertension, in Dopamine Receptor Agonists, Poste, G. and Crooke, S.T., Eds., Plenum, New York, 1984, 237.

    Google Scholar 

  4. Coleman, T.G., Manning, R.D., Jr., Norman, R.A., Jr. and DeClue, J., The role of the kidney in spontaneous hypertension, Am. Heart J., 89, 94, 1975.

    PubMed  CAS  Google Scholar 

  5. Freis, E.D., Ragan, D., Pillsbury, H., Ill and Mathews, M., Alteration of the course of hypertension in the spontaneously hypertensive rat, Circ. Res., 31, 1, 1972.

    CAS  Google Scholar 

  6. Bianchi, G., Fox, U., Di Francesco, G.F., Bardi, U. and Radice, M., The hypertensive role of the kidney in spontaneously hypertensive rats, Clin. Sci. Mol. Med., 45, 135s, 1973.

    Google Scholar 

  7. Kenyon, C.J., DeConti, G.A., Cupolo, N.A. and Morris, D.J., The role of aldosterone in the development of hypertension in spontaneously hypertensive rats, Endocrinology, 109, 1841, 1981.

    PubMed  CAS  Google Scholar 

  8. Toal, C.B. and Leenen, F.H.H., Dietary sodium restriction and development of hypertension in spontaneously hypertensive rats, Am. J. Physiol., 245, H1081, 1983.

    PubMed  CAS  Google Scholar 

  9. Braun-Menéndez, E. and Von Euler, U.S., Hypertension after bilateral nephrectomy in the rat, Nature, 160, 905, 1947.

    PubMed  Google Scholar 

  10. Grollman, A., Muirhead, E.E. and Vanatta, J., Role of the kidney in pathogenesis of hypertension as determined by a study of the effects of bilateral nephrectomy and other experimental procedures on the blood pressure of the dog, Am. J. Physiol., 157, 21, 1949.

    PubMed  CAS  Google Scholar 

  11. Del Greco, F., Grollman, A., Ledingham, J.M., Merrill, J.P. and Muirhead, E.E., Renoprival hypertension, in Renal Hypertension, Page, I.H. and McCub-bin, J.W., Eds., Year Book Medical Publ., Chicago, 1968, 276.

    Google Scholar 

  12. Ledingham, J.M., Blood-pressure regulation in renal failure, J. R. Coll. Phys. Lond., 5, 103, 1971.

    CAS  Google Scholar 

  13. Coleman, T.G., Bower, J.D., Langford, H.G. and Guyton, A.C., Regulation of arterial pressure in the anephric state, Circulation, 42, 509, 1970.

    PubMed  CAS  Google Scholar 

  14. Guyton, A.C., Coleman, T.G., Bower, J.D. and Granger, H.J., Circulatory control in hypertension, Circ. Res., 26/27 (Suppl. 2 ), 135, 1970.

    Google Scholar 

  15. Houck, C.R., Problems in maintenance of chronic bilaterally nephrectomized dog, Am. J. Physiol., 176, 175, 1954.

    PubMed  CAS  Google Scholar 

  16. Nordman, R.A., Jr., Coleman, T.G., Wiley, T.L., Jr., Manning, R.D., Jr. and Guyton, A.C., Separate roles of sodium ion concentration and fluid volumes in salt-loading hypertension in sheep, Am. J. Physiol., 229, 1068, 1975.

    Google Scholar 

  17. Langston, J.B., Guyton, A.C., Douglas, B.H. and Dorsett, P.E., Effect of changes in salt intake on arterial pressure and renal function in partially nephrectomized dogs, Circ. Res., 12, 508, 1963.

    CAS  Google Scholar 

  18. Dustan, H.P. and Page, I.H., Some factors in renal and renoprival hypertension, J. Lab. Clin. Med., 64, 948, 1964.

    PubMed  CAS  Google Scholar 

  19. Wilkinson, R., Scott, D.F., Uldall, P.R., Kerr, D.N.S. and Swinney, J., Plasma renin and exchangeable sodium in the hypertension of chronic renal failure, Q. J. Med., 39, 377, 1970.

    CAS  Google Scholar 

  20. Hampers, C.L., Skillman, J.J., Lyons, J.H., Olsen, J.E. and Merrill, J.P., A hemodynamic evaluation of bilateral nephrectomy and hemodialysis in hypertensive man, Circulation, 35, 272, 1967.

    PubMed  CAS  Google Scholar 

  21. Onesti, G., Kim, K.E., Greco, J.A., Del Guercio, E.T., Fernandes, M. and Swartz, C., Blood pressure regulation in end-stage renal disease and anephric man, Circ. Res., 36/37 (Suppl. 1 ), 145, 1975.

    Google Scholar 

  22. Essadki, A., Le Système rénine-angiotensine et la régulation de la pression artérielle chez le rat, Thèse, Université de Lausanne, Suisse, 1983.

    Google Scholar 

  23. Groliman, A. and Halpert, B., Renal lesions in chronic hypertension induced by unilateral nephrectomy in the rat, Proc. Soc. Exp. Biol. Med., 71, 394, 1949.

    Google Scholar 

  24. Muehrcke, R.C., Mandai, A.K., Epstein, M. and Volini, F.I., Cytoplasmic granularity of the renal medullary interstitial cells in experimental hypertension, J. Lab. Clin. Med., 73, 299, 1969.

    PubMed  CAS  Google Scholar 

  25. Seymour, A.A., Davis, J.O., Freeman, R.H., DeForrest, J.M., Rowe, B.P., Stephens, G.A. and Williams, G.M., Hypertension produced by sodium depletion and unilateral nephrectomy: A new experimental model, Hypertension, 2, 125, 1980.

    PubMed  CAS  Google Scholar 

  26. Koletsky, S. and Goodsitt, A.M., Natural history and pathogenesis of renal ablation hypertension, AMA Arch. Pathol., 69, 654, 1960.

    CAS  Google Scholar 

  27. Gross, F., The renin-angiotensin system and hypertension, Ann. Intern. Med., 75, 777, 1971.

    PubMed  CAS  Google Scholar 

  28. Ylitalo, P., Hepp, R., Oster, P., Mohring, J. and Gross, F., Effects of varying sodium intake on blood pressure and renin-angiotensin system in sub-totally nephrectomized rats, J. Lab. Clin. Med., 88, 807, 1976.

    PubMed  CAS  Google Scholar 

  29. Manning, R.D., Jr., Coleman, T.G., Guyton, A.C., Norman, R.A., Jr. and McCaa, R.E., Essential role of mean circulatory filling pressure in salt-induced hypertension, Am. J. Physiol., 236, R40, 1979.

    PubMed  Google Scholar 

  30. Manning, R.D., Jr., Cowley, A.W., Jr. and Coleman, T.G., Effects of baroreceptor denervation on volume loading hypertension in anephric dogs, Hypertension, 7, 562, 1985.

    PubMed  Google Scholar 

  31. Cowley, A.W. and Guyton, A.C., Baroreceptor reflex effects on transient and steady-state hemodynamics of salt-loading hypertension in dogs, Circ. Res., 36, 536, 1975.

    Google Scholar 

  32. Coleman, T.G. and Guyton, A.C., Hypertension caused by sodium loading in the dog. III. Onset transients of cardiac output and other circulatory variables, Circ. Res., 25, 152, 1969.

    Google Scholar 

  33. Gardes, J., Bouhnik, J., Clauser, E., Corvol, P. and Menard, J., Role of angiotensinogen in blood pressure homeostasis, Hypertension, 4, 185, 1982.

    PubMed  CAS  Google Scholar 

  34. Cowley, A.W., Jr., Miller, J.P. and Guyton, A.C., Open-loop analysis of the renin-angiotensin system in the dog, Circ. Res., 28, 568, 1971.

    CAS  Google Scholar 

  35. Goldblatt, H., Lynch, L., Hanzal, R.F. and Summerville, W.W., Studies on experimental hypertension. I. The production of persistent elevation of systolic blood pressure by means of renal ischemia, J. Exp. Med., 59, 347, 1934.

    CAS  Google Scholar 

  36. 36.-Fasciolo, J.C., Houssay, B.A. and Taquini, A.C., The blood-pressure raising secretion of the ischaemic kidney, J. Physiol. (Lond.), 94, 281, 1938.

    Google Scholar 

  37. Goldblatt, H., The renal origin of hypertension, Physiol. Rev., 27, 120, 1947.

    CAS  Google Scholar 

  38. Hsueh, W.A., Components of the renin system: an update, Am. J. Nephrol., 3, 109, 1983.

    Google Scholar 

  39. Atlas, S.A., Niarchos, A.P. and Case, D.B., Inhibitors of the reninangiotensin system. Effects on blood pressure, aldosterone secretion and renal function, Am. J. Nephrol., 3, 118, 1983.

    PubMed  CAS  Google Scholar 

  40. Rossier, B.C., Geering, K., Atkinson, J. and Roch-Ramel, F., Renal receptors, in The Kidney: Physiology and Pathophysiology, Seldin, D.W. and Giebisch, G., Eds., Raven Press, New York, 1985, 775.

    Google Scholar 

  41. Ferrario, C.M. and Carretero, O.A., Hemodynamics of experimental renal hypertension, in Handbook of Hypertension, Vol. 4: Experimental and Genetic Models of Hypertension, De Jong, W., Ed., Elsevier, Amsterdam, 1984, 55.

    Google Scholar 

  42. Davis, J.O., The pathogenesis of chronic renovascular hypertension, Circ. Res., 40, 439, 1977.

    CAS  Google Scholar 

  43. Gross, F., Schaechtelin, G., Brunner, H. and Peters, G., The role of the renin-angiotensin system in blood pressure regulation and kidney function, Can. Med. Assoc. J., 90, 258, 1964.

    PubMed  CAS  Google Scholar 

  44. Kotchen, T.A. and Guthrie, G.P., Jr., Renin-angiotensin-aldosterone and hypertension, Endocrine Rev., 1, 78, 1980.

    CAS  Google Scholar 

  45. Atlas, S.A. and Case, D.B., Renin in essential hypertension, Clin. Endocrinol. Metab., 10, 537, 1981.

    CAS  Google Scholar 

  46. Laragh, J.H., Sealey, J.E., Biihler, F.R., Vaughan, E.D., Brunner, H.R., Gavras, H. and Baer, L., The renin axis and vasoconstriction volume analysis for understanding and treating renovascular and renal hypertension, Am. J. Med., 58, 4, 1975.

    PubMed  CAS  Google Scholar 

  47. Textor, S.C., Pathophysiology of renovascular hypertension, Urol. Clin. North. Am., 11, 373, 1984.

    PubMed  CAS  Google Scholar 

  48. Perloff, D. and Schambelan, M., Renovascular hypertension, Clin. Endocrinol. Metab., 10, 513, 1981.

    CAS  Google Scholar 

  49. Norman, R.A., Jr., Enobakhare, J.A., DeClue, J.W., Douglas, B.H. and Guyton, A.C., Renal function curves (RFC) in Goldblatt and spontaneously hypertensive rats, Fed. Proc., 36, 531, 1977.

    Google Scholar 

  50. Watkins, B.E., Davis, J.O., Freeman, R.H., DeForrest, J.M. and Stephens, G.A., Continuous angiotensin II blockade throughout the acute phase of one-kidney hypertension in the dog, Circ. Res., 42, 813, 1978.

    CAS  Google Scholar 

  51. Norman, R.A., Jr., Enobakhare, J.A., DeClue, J.W., Douglas, B.H. and Guyton, A.C., Arterial pressure-urinary output relationship in hypertensive rats, Am. J. Physiol., 234, R98, 1978.

    PubMed  Google Scholar 

  52. Hedwall, P.R., Effect of rabbit antibodies against angiotensin-II on the pressor response to angiotensin-II and renal hypertension in the rat, Br. J. Pharmacol., 34, 623, 1968.

    PubMed  CAS  Google Scholar 

  53. Weiser, R.A., Johnson, A. G. and Hoobler, S.W., The effect of antirenin on the blood pressure of the rat with experimental renal hypertension, Lab. Invest., 20, 326, 1969.

    CAS  Google Scholar 

  54. Eide, I. and Aars, H., Renal hypertension in rabbits immunized with angiotensin, Nature, 222, 571, 1969.

    PubMed  CAS  Google Scholar 

  55. Eide, I. and Aars, H., Renal hypertension in rabbits immunized with angiotensin-II, Scand. J. Clin. Lab. Invest., 25, 119, 1970.

    PubMed  CAS  Google Scholar 

  56. Johnston, C.I., Hutchinson, J.S. and Mendelsohn, F.A., Biological significance of renin angiotensin immunization, Circ. Res., 26/27 (Suppl. 2 ), 215, 1970.

    Google Scholar 

  57. Macdonald, G.J., Louis, W.J., Renzini, V., Boyd, G.W. and Peart, W.S., Renal-clip hypertension in rabbits immunized against angiotensin II, Circ. Res., 27, 197, 1970.

    CAS  Google Scholar 

  58. Oates, H.F., Stokes, G.S., Storey, B.G., Glover, R.G. and Snow, B.F., Renal hypertension in rats immunized against angiotensin I and angiotensin II, J. Exp. Med., 139, 239, 1974.

    PubMed  CAS  Google Scholar 

  59. Watkins, B.E., Davis, J.O., Freeman, R.H., Stephens, G.A. and DeForrest, J.M., Effects of the oral converting enzyme inhibitor (SQ 14225) on one-kidney hypertension in the dog, Proc. Soc. Exp. Biol. Med., 157, 245, 1978.

    PubMed  CAS  Google Scholar 

  60. Bengis, R.G. and Coleman, T.G., Antihypertensive effect of prolonged blockade of angiotensin formation in benign and malignant, one-and two-kidney Goldblatt hypertensive rats, Clin. Sci., 57, 53, 1979.

    CAS  Google Scholar 

  61. Bianchi, G., Tilde Tenconi, L. and Lucca, R., Effect in the conscious dog of constriction of the renal artery to a sole remaining kidney on haemodynamics sodium balance, body fluid volumes, plasma renin concentration and pressor responsiveness to angiotensin, Clin. Sci., 38, 741, 1970.

    CAS  Google Scholar 

  62. Brown, T.C., Davis, J.O., Olichney, M.J. and Johnston, C.I., Relation of plasma renin to sodium balance and arterial pressure in experimental renal hypertension, Circ. Res., 18, 475, 1966.

    CAS  Google Scholar 

  63. Harris, R.C. and Ayers, C.R., Renal hemodynamics and plasma renin activity after renal artery constriction in conscious dogs, Circ. Res., 31, 520, 1972.

    CAS  Google Scholar 

  64. Atkinson, J., Kirchertz, E.J., Peters-Haefeli, L. and Luthi, P., The role of plasma and renal renin in the rise in blood pressure following unilateral renal artery constriction, Renal Physiol., 5, 235, 1982.

    PubMed  CAS  Google Scholar 

  65. Essadki, A. and Atkinson, J., Renin release by renin-depleted rats following hypotensive haemorrhage and anesthetics, Pfluegers Arch., 392, 46, 1981.

    CAS  Google Scholar 

  66. Atkinson, J., Luthi, P. and Boillat, N., Cycloheximide and renin release following renal artery constriction, J. Pharmacol. (Paris), 14, 161, 1983.

    CAS  Google Scholar 

  67. Atkinson, J., Luthi, P., Pera-Bally, R. and Peters-Haefeli, L., Interaction between the renin-angiotensin and beta adrenergic nervous systems in drinking and pressor responses after renal artery constriction, J. Pharmacol. Exp. Ther., 221, 453, 1982.

    PubMed  CAS  Google Scholar 

  68. Watkins, B.E., Davis, J.O., Freeman, R.H. and Stephens, G.A., Production of renovascular hypertension in adrenalectomized dogs, Physiologist, 19, 405, 1976.

    Google Scholar 

  69. Seymour, A.A., Davis, J.O., Freeman, R.H., DeForrest, J.M., Rowe, B.P., Stephens, G.A. and Williams, G.M., Sodium and angiotensin in the pathogenesis of experimental renovascular hypertension, Am. J. Physiol., 240, H788, 1981.

    PubMed  CAS  Google Scholar 

  70. Miller, E.D., Jr., Samuels, A.I., Haber, E. and Barger, A.C., Inhibition of angiotensin conversion and prevention of renal hypertension, Am. J. Physiol., 228, 448, 1975.

    PubMed  CAS  Google Scholar 

  71. Miller, E.D., Jr., Samuels, A.I., Haber, E. and Barger, A.C., Inhibition of angiotensin conversion in experimental renovascular hypertension, Science, 177, 1108, 1972.

    PubMed  CAS  Google Scholar 

  72. Coleman, T.G. and Guyton, A.C., The pressor role of angiotensin in salt deprivation and renal hypertension in rats, Clin. Sci. Mol. Med., 48, 45s, 1975.

    Google Scholar 

  73. Bengis, R.G., Coleman, T.G., Young, D.B. and McCaa, R.E., Long-term blockade of angiotensin formation in various normotensive and hypertensive rat models using converting enzyme inhibitor (SQ 14,225), Circ. Res., 43 (Suppl. 1), 45, 1978.

    CAS  Google Scholar 

  74. Riegger, A.J.G., Tree, M., Bean, B.L., Casals–Stenzel, J., Brown, J.J., Fraser, R., Lever, A.F., Morton, J.J. and Robertson, J.I.S., Does angiotensin II act in two ways to raise blood pressure in renal artery stenosis?, in The Kidney in Arterial Hypertension, Bianchi, G. and Bazzato, G., Eds., Bunge Scientific Publ., Utrecht, 1979, 100.

    Google Scholar 

  75. Zimmerman, B.G. and Mommsen, C., Renal blood flow changes in contralateral kidney Goldblatt hypertensive dog, Am. J. Physiol., 241, H145, 1981.

    PubMed  CAS  Google Scholar 

  76. Thompson, J. and Dickinson, C.J., A cross perfusion study of the rabbit kidney to assess the possibilities of long term blood pressure regulation by the kidney, Eur. J. Clin. Invest., 3, 272, 1973.

    Google Scholar 

  77. Masaki, Z., Ferrario, C.M. and Bumpus, F.M., Effects of SQ 20,881 on the intact kidney of dogs with two-kidney, one clip hypertension, Hypertension, 2, 649, 1980.

    PubMed  CAS  Google Scholar 

  78. DeForrest, J.M., Davis, J.O., Freeman, R.H., Watkins, B.E. and Stephens, G.A., Separate renal function studies in conscious dogs with renovascular hypertension, Am. J. Physiol., 235, F310, 1978.

    PubMed  CAS  Google Scholar 

  79. Hashimoto, H., Hiwada, K. and Kokubu, T., Different mechanisms maintaining high blood pressure in chronic one-kidney, one-clip, and two-kidney, one clip hypertensive rats, Clin. Exp. Hypert., Part A, 5, 429, 1983.

    CAS  Google Scholar 

  80. Freeman, R.H., Davis, J.O. and Watkins, B.E., Angiotensin blockade with a new converting enzyme inhibitor (SQ 14,225) in rats and dogs with renovascular hypertension, IRCS Med. Sci., Cardiovasc. Syst./Physiology/Kidneys Urinary System, 5, 470, 1977.

    CAS  Google Scholar 

  81. Lupu, A.N., Maxwell, M.H., Kaufman, J.J. and White, F.N., Experimental unilateral renal artery constriction in the dog, Circ. Res., 30, 567, 1972.

    CAS  Google Scholar 

  82. Lupu, A.N., Maxwell, M.H. and Kaufman, J.J., Mechanisms of hypertension during the chronic phase of the one-clip, two-kidney model in the dog, Circ. Res., 40 (Suppl. 1), 57, 1977.

    Google Scholar 

  83. Watkins, B.E., Davis, J.O., Hanson, R.C., Lohmeier, T.E. and Freeman, R.H., Incidence and pathophysiological changes in chronic two-kidney hypertension in the dog, Am. J. Physiol., 231, 954, 1976.

    PubMed  CAS  Google Scholar 

  84. Cowley, A.W., Jr., Switzer, S.J. and Guinn, M.M., Evidence and quantification of the vasopressin arterial pressure control system in the dog, Circ. Res., 46, 58, 1980.

    CAS  Google Scholar 

  85. Young, D.B., Pan, Y.J. and Guyton, A.C., Control of extracellular sodium concentration by antidiuretic hormone-thirst feedback mechanism, Am. J. Physiol., 232, R145, 1977.

    PubMed  CAS  Google Scholar 

  86. Share, L., Interrelations between vasopressin and the renin-angiotensin system, Fed. Proc., 38, 2267, 1979.

    PubMed  CAS  Google Scholar 

  87. Cowley, A.W., Jr., Guinn, M., Quillen, E.W. and Hockel, G.M., Vasopressin and thirst response to chronic I.V. angiotensin II infusion in dogs, Fed. Proc., 38, 967, 1979.

    Google Scholar 

  88. Ben, L.K., Maselli, J., Keil, L.C. and Reid, I.A., Role of the renin-angiotensin system in the control of vasopressin and ACTH secretion during the development of renal hypertension in dogs, Hypertension, 6, 35, 1984.

    PubMed  CAS  Google Scholar 

  89. Koletsky, S. and Rivera-Velez, J.M., Factors determining the success or failure of nephrectomy in experimental renal hypertension, J. Lab. Clin. Med., 76, 54, 1970.

    PubMed  CAS  Google Scholar 

  90. Masaki, Z., Ferrario, C.M., Burrpus, F.M., Bravo, E.L. and Khosla, M.C., the course of arterial pressure and the effect of Sar1-Thr1angiotensin II in a new model of two-kidney hypertension in conscious dogs, Clin. Sci. M.l. Med., 52, 163, 1977.

    CAS  Google Scholar 

  91. Gavras, H., Brunner, H.R., Thurston, H. and Laragh, J.H., Reciprocation of renin dependency with sodium volume dependency in renal hypertension, Science, 188, 1316, 1975.

    PubMed  CAS  Google Scholar 

  92. McCaa, R.E., McCaa, C.S., Bengis, R.G. and Guyton, A.C., Role of aldosterone in experimental hypertension, J. Endocrinol., 81, 69P, 1979.

    Google Scholar 

  93. Hollenberg, N.K., Renal hemodynamics in essential and renovascular hypertension, Am. J. Med., 76, 22, 1984.

    PubMed  CAS  Google Scholar 

  94. Ames, R.P., Borkowski, A.J., Sicinski, A.M. and Laragh, J.H., Prolonged infusions of angiotensin II and norepinephrine and blood pressure, electrolyte balance, and aldosterone and Cortisol secretion in normal man and in cirrhosis with ascites, J. Clin. Invest., 44, 1171, 1965.

    PubMed  CAS  Google Scholar 

  95. DeClue, J.W., Guyton, A.C., Cowley, A.W., Jr., Coleman, T.G., Norman, R.A., Jr. and McCaa, R.E., Subpressor angiotensin infusion, renal sodium handling, and salt-induced hypertension in the dog, Circ. Res., 43, 503, 1978.

    CAS  Google Scholar 

  96. Lohmeier, T.E. and Cowley, A.W., Jr., Hypertensive and renal effects of chronic low level intrarenal angiotensin infusion in the dog, Circ. Res., 44, 154, 1979.

    CAS  Google Scholar 

  97. Hall, J.E., Granger, J.P., Hester, R.L., Coleman, T.G., Smith, M.J., Jr. and Cross, R.B., Mechanisms of escape from sodium retention during angiotensin II hypertension, Am. J. Physiol., 246, F627, 1984.

    PubMed  CAS  Google Scholar 

  98. Cowley, A.W., Jr. and DeClue, J.W., Quantification of baroreceptor influence on arterial pressure changes seen in primary angiotensin-induced hypertension in dogs, Circ. Res., 39, 779, 1976.

    CAS  Google Scholar 

  99. Cowley, A.W., Jr. and McCaa, R.E., Acute and chronic dose-response relationships for angiotensin, aldosterone, and arterial pressure at varying levels of sodium intake, Circ. Res., 39, 788, 1976.

    CAS  Google Scholar 

  100. Lohmeier, T.E., Cowley, A.W., Jr., DeClue, J.W. and Guyton, A.C., Failure of chronic aldosterone infusion to increase arterial pressure in dogs with angiotensin-induced hypertension, Circ. Res., 43, 381, 1978.

    CAS  Google Scholar 

  101. Hall, J.E., Guyton, A.C., Smith, M.J., Jr. and Coleman, T.G., Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin, Am. J. Physiol., 239, F271, 1980.

    PubMed  CAS  Google Scholar 

  102. Hall, J.E., Guyton, A.C., Salgado, H.C., McCaa, R.E. and Balfe, J.W., Renal hemodynamics in acute and chronic angiotensin II hypertension, Am. J. Physiol., 235, F174, 1978.

    PubMed  CAS  Google Scholar 

  103. Hall, J.E., Guyton, A.C., Smith, M.J., Jr. and Coleman, T.G., Long-term regulation of arterial pressure, glomerular filtration and renal sodium reabsorption by angiotensin II in dogs, Clin. Sci., 59, 87s, 1980.

    Google Scholar 

  104. McCaa, R.E., Role of the renin-angiotensin-aldosterone and kallikrein-kinin systems in the control of fluid and electrolyte metabolism, renal function, and arterial blood pressure, Clin. Exp. Hypert., Part A, 4, 1593, 1982.

    CAS  Google Scholar 

  105. Waugh, W.H., Angiotensin II: Local renal effects of physiological increments in concentration, Can. J. Physiol. Pharmacol., 50, 711, 1972.

    PubMed  CAS  Google Scholar 

  106. Fagard, R.H., Cowley, A.W., Jr., Navar, L.G., Langford, H.G. and Guyton, A.C., Renal responses to slight elevations of renal arterial plasma angiotensin II concentration in dogs, Clin. Exp. Pharmacol. Physiol., 3, 531, 1976.

    PubMed  CAS  Google Scholar 

  107. Hall, J.E., Guyton, A.C., Trippodo, N.C., Lohmeier, T.E., McCaa, R.E. and Cowley, A.W., Jr., Intrarenal control of electrolyte excretion by angiotensin II, Am. J. Physiol., 232, F538, 1977.

    PubMed  CAS  Google Scholar 

  108. Trippodo, N.C., Hall, J.E., Lohmeier, T.E. and Guyton, A.C., Intrarenal role of angiotensin II in controlling sodium excretion during dehydration in dogs, Clin. Sci. Mol. Med., 52, 545, 1977.

    PubMed  CAS  Google Scholar 

  109. Lohmeier, T.E., Cowley, A.W., Jr., Trippodo, N.C., Hall, J.E. and Guyton, A.C., Effects of endogenous angiotensin II on renal sodium excretion and renal hemodynamics, Am. J. Physiol., 233, F388, 1977.

    PubMed  CAS  Google Scholar 

  110. Harris, P.J. and Navar, L.G., Tubular transport responses to angiotensin, Am. J. Physiol., 248, F621, 1985.

    PubMed  CAS  Google Scholar 

  111. Morgan, R. and Davis, J.M., Renin secretion at the individual nephron level, Pfluegers Arch., 359, 23, 1975.

    CAS  Google Scholar 

  112. Regoli, D., Studies on the intrarenal action of the renin-angiotensin system, in Hypertension-1972, Genest, J. and Koiw, E., Eds., Springer, Berlin, 1972, 72.

    Google Scholar 

  113. Hall, J.E., Guyton, A.C. and Cowley, A.W., Jr., Dissociation of renal blood flow and filtration rate autoregulation by renin depletion, Am. J. Physiol., 232, F215, 1977.

    PubMed  CAS  Google Scholar 

  114. Hall, J.E., Coleman, T.G., Guyton, A.C., Balfe, J.W. and Salgado, H.C., Intrarenal role of angiotensin II and [des-Asp] angiotensin II, Am. J. Physiol., 236, F252, 1979.

    PubMed  CAS  Google Scholar 

  115. Thurau, K. and Mason, J., Renin–angiotensin: a local determinant for glomerular filtration, in Mechanisms of Hypertension, Sambhi, M.P., Ed., Excerpta Medica, Amsterdam, Elsevier, New York, 1973, 32.

    Google Scholar 

  116. Hall, J.E., Guyton, A.C., Jackson, T.E., Coleman, T.G., Lohmeier, T.E. and Trippodo, N.C., Control of glomerular filtration rate by renin-angiotensin system, Am. J. Physiol., 233, F366, 1977.

    PubMed  CAS  Google Scholar 

  117. Hall, J.E. and Granger, J.P., Renal hemodynamic actions of angiotensin II: interaction with tubuloglomerular feedback, Am. J. Physiol., 245, R166, 1983.

    PubMed  CAS  Google Scholar 

  118. Ljungman, S., Aureli, M., Hartford, M., Wikstrand, J., Wilhelmsen, L. and Berglund, G., Blood pressure and renal function, Acta. Med. Scand., 298, 17, 1980.

    Google Scholar 

  119. Muirhead, E.E., Antihypertensive functions of the kidney, Hypertension, 2, 444, 1980.

    PubMed  CAS  Google Scholar 

  120. Muirhead, E.E. and Pitcock, J.A., The renal antihypertensive hormone, J. Hypert., 3, 1, 1985.

    CAS  Google Scholar 

  121. Mandai, A.K., The renal papilla and hypertension. An up-to-date review, Pathol. Annu., 16, 295, 1981.

    Google Scholar 

  122. Hamilton, J. G. and Grollman, A., The preparation of renal extracts effective in reducing blood pressure in experimental hypertension, J. Biol. Chem., 233, 528, 1958.

    PubMed  CAS  Google Scholar 

  123. Grollman, A., Pathogenesis of hypertension and implications for its therapeutic management, Clin. Pharmacol. Ther., 10, 755, 1969.

    CAS  Google Scholar 

  124. Page, I.H., Helmer, O.M., Kohlstaedt, K.G., Kempf, G.F., Gambill, W.D. and Taylor, R.D., The blood pressure reducing property of extracts of kidneys in hypertensive patients and animals, Ann. Intern. Med., 15, 347, 1941.

    CAS  Google Scholar 

  125. Page, I.H., Helmer, O.M., Kohlstaedt, K.G., Fouts, P.J. and Kempf, G.F., Reduction of arterial blood pressure of hypertensive patients and animals with extracts of kidneys, J. Exp. Med., 73, 7, 1941.

    PubMed  CAS  Google Scholar 

  126. Floyer, M.A., Renal control of interstitial space compliance: a physiological mechanism which may play a part in the etiology of hypertension, Clin. Nephrol., 4, 152, 1975.

    CAS  Google Scholar 

  127. Green, J.A., Lucas, J. and Floyer, M.A., The effect of the kidney in altering the response of the circulation to fluid loading, Clin. Sci., 38, 4P, 1970.

    Google Scholar 

  128. Lucas, J. and Floyer, M.A., Renal control of changes in the compliance of the interstitial space: A factor in the aetiology of renoprival hypertension, Clin. Sci., 44, 397, 1973.

    CAS  Google Scholar 

  129. Guyton, A.C., Interstitial fluid pressure. II. Pressure-volume curves of interstitial space, Circ. Res., 16, 452, 1965.

    CAS  Google Scholar 

  130. Lucas, J. and Floyer, M.A., Changes in body fluid distribution and interstitial tissue compliance during the development and reversal of experimental renal hypertension in the rat, Clin. Sci. Mol. Med., 47, 1, 1974.

    PubMed  CAS  Google Scholar 

  131. Neubig, R.R. and Hoobler, S.W., Reversal of chronic renal hypertension: Role of salt and water excretion, Proc. Soc. Exp. Biol. Med., 150, 254, 1975.

    PubMed  CAS  Google Scholar 

  132. Hoobler, S.W., Eto, T., Welk, R. and Burge, H., Antihypertensive effect of transplant of rat kidney or its unciipping. Hemodynamic effects and control mechanisms, Hypertension, 3 (Suppl. 2), 200, 1981.

    CAS  Google Scholar 

  133. Muirhead, E.E., Jones, F. and Graham, P., Hypertension following bilateral nephrectomy of the dog. The influence of dietary protein on its pathogenesis with emphasis on its development in the absence of “extracellular fluid” expansion, Circ. Res., 1, 439, 1953.

    CAS  Google Scholar 

  134. Muirhead, E.E., Stirman, J.A., Lesch, W. and Jones, F., The reduction of postnephrectomy hypertension by renal homotransplant, Surg. Gynaecol. Obst., 103, 673, 1956.

    Google Scholar 

  135. Muirhead, E.E., Brooks, B. and Brosius, W.L., Renomedullary deficiency, Arch. Pathol., 95, 77, 1973.

    CAS  Google Scholar 

  136. Susie, D., Sparks, J.C. and Machado, E.A., Salt-induced hypertension in rats with hereditary hydronephrosis: the effect of renomedullary transplantation, J. Lab. Clin. Med., 87, 232, 1976.

    Google Scholar 

  137. Muirhead, E.E., Jones, F. and Stirman, J.A., Antihypertensive property in renoprival hypertension of extract from renal medulla, J. Lab. Clin. Med., 56, 167, 1960.

    PubMed  CAS  Google Scholar 

  138. Manthorpe, T., Antihypertensive and hypertensive effects of the kidney: elucidated by treatment with medullary transplants and with blockade either of the renin angiotensin-system or of the prostaglandin biosynthesis, Acta Pathol. Microbiol. Scand., Sect. A, 83, 395, 1975.

    Google Scholar 

  139. Manthorpe, T., The effect on renal hypertension of subcutaneous isotransplantation of renal medulla from normal or hypertensive rats: including studies on spontaneous variations in blood pressure in normal and hypertensive rats, Acta. Pathol. Microbiol. Scand., Sect. A, 81, 725, 1973.

    CAS  Google Scholar 

  140. Manger, W.M., Van Praag, D., Weiss, R.J., Hart, C.J., Hulse, M., Rock, T.W. and Farber, S.J., Effect of transplanting renomedullary tissue into spontaneously hypertensive rats (SHR), Fed. Proc., 35, 556, 1976.

    Google Scholar 

  141. Gothberg, G., Lundin, S. and Folkow, B., Acute vasodepressor effect in nor-motensive rats following extracorporal perfusion of the declipped kidney of two-kidney, one clip hypertensive rats, Hypertension, 4 (Suppl. 2), 101, 1982.

    PubMed  CAS  Google Scholar 

  142. Muirhead, E.E., Byers, L.W., Desiderio, D.M., Jr., Pitcock, J.A., Brooks, B., Brown, P.S. and Brosius, W.L., Derivation of antihypertensive neutral renomedullary lipid from renal venous effluent, J. Lab. Clin. Med., 99, 64, 1982.

    PubMed  CAS  Google Scholar 

  143. Heptinstall, R.H., Salyer, D.C. and Salyer, W.R., Experimental hypertension. The effects of chemical ablation of the renal papilla on the blood pressure of rats with and without silver-clip hypertension, Am. J. Pathol., 78, 297, 1975.

    PubMed  CAS  Google Scholar 

  144. Taverner, D., Bing, R.F., Fletcher, A., Russell, G., Swales, J.D. and Thurston, H., Hypertension produced by chemical renal medullectomy: evidence for a renomedullary vasodepressor function in the rat, Clin. Sci., 67, 521, 1984.

    CAS  Google Scholar 

  145. Bing, R.F., Russell, G.I., Swales, J.D., Thurston, H. and Fletcher, A., Chemical renal medullectomy; effect upon reversal of two-kidney, one-clip hypertension in the rat, Clin. Sci., 61, 335s, 1981.

    Google Scholar 

  146. Russell, G.I., Taverner, D., Jackson, J., Bing, R.F., Swales, J.D. and Thurston, H., Role of the renal medulla in experimented hypertension, in Contributions to Nephrology, Karger, Basel, vol. 41, 1984, 163.

    CAS  Google Scholar 

  147. Muirhead, E.E., Pitcock, J.A., Nasjlett, A., Brown, P. and Brooks, B., The antihypertension function of the kidney. Its elucidation by captopril plus unclipping, Hypertension, 7 (Suppl. 1), 127, 1985.

    CAS  Google Scholar 

  148. Russell, G.I., Bing, R.F., Swales, J.D. and Thurston, H., Indomethacin or aprotinin infusion: effect on reversal of chronic two–kidney, one-clip hypertension in the conscious rat, Clin. Sci., 62, 361, 1982.

    CAS  Google Scholar 

  149. Muirhead, E.E., Leach, B.E., Byers, L.W., Brooks, B. and Pitcock, J.A., Renomedullary interstitial cells and the antihypertensive renomedullary hormone, Clin. Res., 24, 474A, 1976.

    Google Scholar 

  150. Muirhead, E.E. and Brooks, B., Reversal of one-kidney, one-clip hypertension by unclipping: The renal, sodium-volume relationship reexamined, Proc. Soc. Exp. Biol. Med., 163, 540, 1980.

    PubMed  CAS  Google Scholar 

  151. Muirhead, E.E., Vanatta, J. and Grollman, A., Papillary necrosis of the kidney. A clinical and experimental correlation, J. Am. Med. Assoc., 142, 627, 1950.

    PubMed  CAS  Google Scholar 

  152. Muirhead, E.E. and Stirman, J.A., Dietary protein and hypertension of dog: Protection by uretero-caval anastomosis with a study of kidneys so treated, Am. J. Pathol., 34, 561, 1958.

    Google Scholar 

  153. Pitcock, J.A., Brown, P.S., Brooks, B., Rapp, J.P., Rightsel, W. and Muirhead, E.E., The morphology and antihypertensive effect of renomedullary interstitial cells derived from Dahl sensitive and resistant rats, Exp. Mol. Pathol., 42, 29, 1985.

    CAS  Google Scholar 

  154. Ishii, M. and Tobian, L., Interstitial cell granules in renal papilla and the solute composition of renal tissue in rats with Goldblatt hypertension, J. Lab. Clin. Med., 74, 47, 1969.

    PubMed  CAS  Google Scholar 

  155. Muehrcke, R.C., Mandai, A.K. and Volini, F.I., A pathophysiological review of the renal medullary interstitial cells and their relationship to hypertension, Circ. Res., 26/27 (Suppl. 1 ), 109, 1970.

    Google Scholar 

  156. Pitcock, J.A., Brown, P.S., Brooks, B., Clapp, W.L., Brosius, W.L. and Muirhead, E.E., Renomedullary deficiency in partial nephrectomy–salt hypertension, Hypertension, 2, 281, 1980.

    PubMed  CAS  Google Scholar 

  157. Muirhead, E.E., Jones, F. and Stirman, J.A., Hypertensive cardiovascular disease of dog, Arch. Pathol., 70, 108, 1960.

    CAS  Google Scholar 

  158. Murray, G., Wyllie, R.G., Hill, G.S., Ramsden, P.W. and Heptinstall, R.H., Experimental papillary necrosis of the kidney. I. Morphologic and functional data, Am. J. Pathol., 67, 285, 1972.

    CAS  Google Scholar 

  159. Axelsen, R.A., Healed experimental renal papillary necrosis and cortical scarring in the rat from 2-bromoethylamine hydrobromide, Virchows Arch., A: Pathol. Anat. Histol., 381, 63, 1978.

    CAS  Google Scholar 

  160. Bing, R.F., Russell, G.I., Thurston, H., Swales, J.D., Godfrey, N., Lazarus, Y. and Jackson, J., Chemical renal medullectomy. Effect on urinary prostaglandin E2 and plasma renin in response to variations in sodium intake and in relation to blood pressure, Hypertension, 5, 951, 1983.

    PubMed  CAS  Google Scholar 

  161. Chen, P.S., Caldwell, R.M. and Hsu, C.H., Role of renal papillae in the regulation of sodium excretion during acute elevation of renal perfusion pressure in the rat, Hypertension, 6, 893, 1984.

    PubMed  CAS  Google Scholar 

  162. Muirhead, E.E., Case for a renomedullary blood pressure lowering hormone, in Contributions to Nephrology, Vol. 12: Vasoactive Renal Hormones, Eisenbach, G.M. and Brod, J., Eds., Karger, Basel, 1978, 69.

    Google Scholar 

  163. Smith, K.A., Cornett, L.E., Norris, J.S., Byers, L.W. and Muirhead, E.E., Blockade of alpha-adrenergic receptors by analogues of phosphatidylcholine, Life Sei., 31, 1891, 1982.

    CAS  Google Scholar 

  164. Muirhead, E.E., Leach, B.E., Brooks, B., Shaw, P.H., Brosius, W.L., Jr., Daniels, E.G. and Hinman, J.W., Antihypertensive renomedullary lipid in the hypertensive rabbit, Rev. Franc. Etud. Clin. Biol., 12, 893, 1967.

    PubMed  CAS  Google Scholar 

  165. Prewitt, R.L., Leach, B.E., Byers, L.W., Brooks, B., Lands, W.E.M. and Muirhead, E.E., Antihypertensive polar renomedullary lipid, a semisynthetic vasodilator, Hypertension, 1, 299, 1979.

    PubMed  CAS  Google Scholar 

  166. Muirhead, E.E., Folkow, B., Byers, L.W., Desiderio, D.M., Jr., Thoren, P., Göthberg, G., Dow, A.W. and Brooks, B., Cardiovascular effects of antihypertensive polar and neutral renomedullary lipids, Hypertension, 5 (Suppl. 1), 112, 1983.

    CAS  Google Scholar 

  167. Muirhead, E.E., Byers, L.W., Folkow, B., Göthberg, G., Thoren, P. and Brooks, B., Antihypertensive polar and neutral renopapillary lipids. Which is a hormone?, Hypertension, 5 (Suppl. 5), 61, 1983.

    CAS  Google Scholar 

  168. Muirhead, E.E., Folkow, B., Byers, L.W., Aus, G., Friberg, P., Göthberg, G., Nilsson, H. and Thoren, P., Cardiovascular effects of antihypertensive renomedullary lipids (APRL and ANRL), Acta Physiol. Scand., 117, 465, 1983.

    CAS  Google Scholar 

  169. Faber, J.E., Barron, K.W., Bonham, A.C., Lappe, R., Muirhead, E.E. and Brody, M.J., Regional hemodynamic effects of antihypertensive renomedullary lipids in conscious rats, Hypertension, 6, 494, 1984.

    PubMed  CAS  Google Scholar 

  170. Smith, K.A., Prewitt, R.L., Jr., Byers, L.W. and Muirhead, E.E., Analogs of phosphatidylcholine: a-adrenergic antagonists from the renal medulla, Hypertension, 3, 460, 1981.

    PubMed  CAS  Google Scholar 

  171. Blank, M.L., Snyder, F., Byers, L.W., Brooks, B. and Muirhead, E.E., Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun., 90, 1194, 1979.

    CAS  Google Scholar 

  172. Muirhead, E.E., Byers, L.W., Desiderio, D., Jr., Smith, K.A., Prewitt, R.L. and Brooks, B., Alkyl ether analogs of phosphatidylcholine are orally active in hypertensive rabbits, Hypertension, 3 (Suppl. 1), 107, 1981.

    CAS  Google Scholar 

  173. McManus, L.M., Hanahan, D.J., Demopoulos, C.A. and Pinckard, R.N., Pathobiology of the intravenous infusion of acetyl glyceryl ether phosphorylcholine (AGEPC), a synthetic platelet-activating factor (PAF), in the rabbit, J. Immunol., 124, 2919, 1980.

    PubMed  CAS  Google Scholar 

  174. Braun-Menéndez, E., The prohypertensive and antihypertensive actions of the kidney, Ann. Intern. Med., 49, 717, 1958.

    Google Scholar 

  175. De Wardener, H.E. and MacGregor, G.A., The natriuretic hormone and hypertension, J. Chron. Dis., 34, 233, 1981.

    PubMed  Google Scholar 

  176. Marx, J.L., Natriuretic hormone linked to hypertension, Science, 212, 1255, 1981.

    PubMed  CAS  Google Scholar 

  177. De Wardener, H.E. and MacGregor, G.A., Dahl1s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: Its possible role in essential hypertension, Kidney Int., 18, 1, 1980.

    PubMed  Google Scholar 

  178. De Wardener, H.E. and MacGregor, G.A., The natriuretic hormone and essential hypertension, Lancet, 1, 1450, 1982.

    PubMed  Google Scholar 

  179. Sagnella, G.A. and MacGregor, G.A., Cardiac peptides and the control of sodium excretion, Nature, 309, 666, 1984.

    PubMed  CAS  Google Scholar 

  180. De Wardener, H.E. and Clarkson, E.M., Concept of natriuretic hormone, Physiol. Rev., 65, 658, 1985.

    Google Scholar 

  181. Mills, I.H., Atrial natriuretic factor: a new hormone ?, Br. Med. J., 289, 210, 1984.

    CAS  Google Scholar 

  182. Trippodo, N.C., Cole, F.E. and MacPhee, A.A., Atrial natriuretic factor: sodium transport in human erythrocytes, Clin. Sci., 67, 403, 1984.

    CAS  Google Scholar 

  183. Sagnella, G.A. and MacGregor, G.A., Endogenous digitalis: true or false?, Trends Pharmacol. Sci., 6, 393, 1985.

    CAS  Google Scholar 

  184. Pamnani, M.B., Clough, D.L., Chen, J.S., Link, W.T. and Haddy, F.J., Effects of rat atrial extract on sodium transport and blood pressure in the rat, Proc. Soc. Exp. Biol. Med., 176, 123, 1984.

    PubMed  CAS  Google Scholar 

  185. Dahl, L.K., Knudsen, K.D., Heine, M.A. and Leitl, G.J., Effects of chronic excess salt ingestion. Modification of experimental hypertension in the rat by variations in the diet, Circ. Res., 22, 11, 1968.

    CAS  Google Scholar 

  186. Dahl, L.K., Heine, M. and Tassinari, L., Effects of chronic excess salt ingestion. Role of genetic factors in both DOCA-salt and renal hypertension, J. Exp. Med., 118, 605, 1963.

    PubMed  CAS  Google Scholar 

  187. Dahl, L.K., Heine, M. and Tassinari, L., Effects of chronic excess salt ingestion. Further demonstration that genetic factors influence the development of hypertension: Evidence from experimental hypertension due to cortisone and to adrenal regeneration, J. Exp. Med., 122, 533, 1965.

    PubMed  CAS  Google Scholar 

  188. Dahl, L.K., Knudsen, K.D., Heine, M. and Leitl, G., Effects of chronic excess salt ingestion. Genetic influence on the development of salt hypertension in parabiotic rats: Evidence for a humoral factor, J. Exp. Med., 126, 687, 1967.

    PubMed  CAS  Google Scholar 

  189. Iwai, J., Knudsen, K.D., Dahl, L.K., Heine, M. and Leitl, G., Genetic influence on the development of renal hypertension in parabiotic rats, J. Exp. Med., 129, 507, 1969.

    PubMed  CAS  Google Scholar 

  190. Dahl, L.K., Knudsen, K.D. and Iwai, J., Humoral transmission of hypertension: Evidence from parabiosis, Circ. Res., 24/25 (Suppl. 1 ), 21, 1969.

    Google Scholar 

  191. Snajdar, R.M. and Rapp, J.P., Atrial natriuretic factor in Dahl rats. Atrial content and renal and aortic responses, Hypertension, 7, 775, 1985.

    PubMed  CAS  Google Scholar 

  192. Haddy, F.J. and Overbeck, H.W., The role of humoral agents in volume expanded hypertension, Life Sci., 19, 935, 1976.

    PubMed  CAS  Google Scholar 

  193. Neufeld, E., Sklarz, B., Goldberg, S., Gilad, S., Goldfarb, H., Laurian, L., Silverberg, D.S. and Chayen, R., Observations on the chemical and physiological properties of urodiolenone, an urinary compound found in hypertension, Nephron, 39, 146, 1985.

    PubMed  CAS  Google Scholar 

  194. Mason, D.T. and Braunwald, E., Studies on digitalis. X. Effects of ouabain on forearm vascular resistance and venous tone in normal subjects and in patients in heart failure, J. Clin. Invest., 43, 532, 1964.

    CAS  Google Scholar 

  195. Floyer, M.A., Further studies on the mechanism of experimental hypertension in the rat, Clin. Sci., 14, 163, 1955.

    CAS  Google Scholar 

  196. Borst, J.G.G. and Borst-De Geus, A., Hypertension explained by Starling’s theory of circulatory homeostasis, Lancet, 1, 677, 1963.

    PubMed  CAS  Google Scholar 

  197. Blaustein, M.P., Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis, Am. J. Physiol., 232, C165, 1977.

    PubMed  CAS  Google Scholar 

  198. Brading, A.F. and Lategan, T.W., Na-Ca exchange in vascular smooth muscle, J. Hypert., 3, 109, 1985.

    CAS  Google Scholar 

  199. Shore, A.C., Beynon, G.W., Jones, J.C., Markandu, N.D., Sagnella, G.A. and MacGregor, G.A., Mononuclear leucocyte intracellular free calcium: Does it correlate with blood pressure ?, J. Hypert., 3, 183, 1985.

    CAS  Google Scholar 

  200. De Wardener, H.E., The concept of the natriuretic hormone and its relation to hypertension, Clin. Exp. Hypert., Part A, 7, 647, 1985.

    Google Scholar 

  201. Haddy, F.J. and Pamnani, M.B., Evidence for a circulating sodium-potassium pump inhibitor in low renin hypertension, Clin. Exp. Hypert., Part A, 7, 633, 1985.

    CAS  Google Scholar 

  202. De Wardener, H.E., MacGregor, G.A., Clarkson, E.M., Alaghband-Zadeh, J., Bitensky, L. and Chayen, J., Effect of sodium intake on ability of human plasma to inhibit renal Na+-K+-adenosine triphosphatase in vitro, Lancet, 1, 411, 1981.

    PubMed  Google Scholar 

  203. Poston, L., Sewell, R.B., Wilkinson, S.P., Richardson, P.J., Williams, R., Clarkson, E.M., MacGregor, G.A. and De Wardener, H.E., Evidence for a circulating sodium transport inhibitor in essential hypertension, Br. Med. J., 282, 847, 1981.

    CAS  Google Scholar 

  204. Fenton, S., Clarkson, E.M., MacGregor, G.A., Alaghband-Zadeh, J. and De Wardener, H.E., An assay of the capacity of biological fluids to stimulate renal glucose-6-phosphate dehydrogenase activity in vitro as a marker of their ability to inhibit sodium potassium-dependent adenosine triphosphatase activity, J. Endocrinol., 94, 99, 1982.

    PubMed  CAS  Google Scholar 

  205. MacGregor, G.A., Fenton, S., Alaghband–Zadeh, J., Markandu, N., Roulston, J.E. and De Wardener, H.E., Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension, Br. Med. J., 283, 1355, 1981.

    Google Scholar 

  206. MacGregor, G.A., Fenton, S., Alaghband–Zadeh, J., Markandu, N.D., Roulston, J.E. and De Wardener, H.E., An increase in a circulating inhibitor of Na+,K+-dependent ATPase: a possible link between salt intake and the development of essential hypertension, Clin. Sci., 61, 17s, 1981.

    Google Scholar 

  207. Clarkson, E.M., Raw, S.M. and De Wardener, H.E., Two natriuretic substances in extracts of urine from normal man when salt-depleted and salt-loaded, Kidney Int., 10, 381, 1976.

    PubMed  CAS  Google Scholar 

  208. Lichtstein, D., Mine, D., Shimoni, Y., Deutsch, J., Mekler, J. and Ben-Ishay, D., Demonstration of a ouabainlike plasma compound in hypertension prone and hypertension resistant rats, Hypertension, 7, 729, 1985.

    PubMed  CAS  Google Scholar 

  209. Jones, R.B., Patrick, J. and Hilton, P.J., Increased sodium content and altered sodium transport in thymocytes of spontaneously hypertensive rats, Clin. Sei., 61, 313, 1981.

    CAS  Google Scholar 

  210. Pamnani, M.B., Buggy, J., Huot, S.J. and Haddy, F.J., Studies on the role of a humoral sodium-transport inhibitor and the anteroventral third ventricle (AV3V) in experimental low-renin hypertension, Clin. Sei., 61, 57s, 1981.

    Google Scholar 

  211. Mason, J.C., Poston, L. and Hilton, P.J., Sodium pump activity in thymocytes of rats with Goldblatt hypertension, Clin. Sei., 68, 11, 1985.

    CAS  Google Scholar 

  212. Zidek, W., Losse, H., Lange–Asschenfeldt, H. and Vetter, H., Intracellular chloride in essential hypertension, Clin. Sei., 68, 45, 1985.

    CAS  Google Scholar 

  213. Alaghband-Zadeh, J., Fenton, S., Hancock, K., Millett, J. and De Wardener, H.E., Evidence that the hypothalamus may be a source of a circulating Na+-K+-ATPase inhibitor, J. Endocrinol., 98, 221, 1983.

    PubMed  CAS  Google Scholar 

  214. Blaine, E.H., Emergence of a new cardiovascular control system: atrial natriuretic factor. An introduction, Clin. Exp. Hypert., Part A, 7, 839, 1985.

    CAS  Google Scholar 

  215. Maack, T., Camargo, M.J.F., Kleinert, H.D., Laragh, J.H. and Atlas, S.A., Atrial natriuretic factor: Structure and functional properties, Kidney Int., 27, 607, 1985.

    PubMed  CAS  Google Scholar 

  216. Needleman, P., Adams, S.P., Cole, B.R., Currie, M.G., Geller, D.M., Michener, M.L., Saper, C.B., Schwartz, D. and Standaert, D.G., Atriopeptins as cardiac hormones, Hypertension, 7, 469, 1985.

    PubMed  CAS  Google Scholar 

  217. Henry, J.P., Gauer, O.H. and Reeves, J.L., Evidence of the atrial location of receptors influencing urine flow, Circ. Res., 4, 85, 1956.

    CAS  Google Scholar 

  218. De Bold, A.J., Raymond, J.J. and Bencosme, S.A., Atrial specific granules of the rat heart: light microscopic staining and histochemical reactions, J. Histochem. Cytochem., 26, 1094, 1978.

    PubMed  Google Scholar 

  219. Gutkowska, J., Thibault, G., Januszewicz, P., Cantin, M. and Genest, J., Direct radioimmunoassay of atrial natriuretic factor, Biochem. Biophys. Res. Commun., 122, 593, 1984.

    CAS  Google Scholar 

  220. Cantin, M., Gutkowska, J., Thibault, G., Milne, R.W., Ledoux, S., MinLi, S., Chapeau, C., Garcia, R., Hamet, P. and Genest, J., Immunocytochemical localization of atrial natriuretic factor in the heart and salivary glands, Histochemistry, 80, 113, 1984.

    PubMed  CAS  Google Scholar 

  221. De Bold, A.J., Heart atria granularity effects of changes in water-electrolyte balance, Proc. Soc. Exp. Biol. Med., 161, 508, 1979.

    PubMed  Google Scholar 

  222. Pollock, D.M. and Banks, R.O., Influence of dietary sodium on the natriuretic activity of atrial tissue, Mineral Electrolyte Metab., 10, 337, 1984.

    CAS  Google Scholar 

  223. Thibault, G., Garcia, R., Cantin, M. and Genest, J., Atrial natriuretic factor. Characterization and partial purification, Hypertension, 5 (Suppl. 1), 75, 1983.

    CAS  Google Scholar 

  224. Johnson, M.D., An improved bioassay method for determining natriuretic activity of atrial extracts, Am. J. Physiol., 248, F314, 1985.

    PubMed  CAS  Google Scholar 

  225. Sonnenberg, H. and Veress, A.T., Cellular mechanism of release of atrial natriuretic factor, Biochem. Biophys. Res. Commun., 124, 443, 1984.

    CAS  Google Scholar 

  226. Currie, M.G., Geller, D.M., Cole, B.R., Siegel, N.R., Fok, K.F., Adams, S.P., Eubanks, S.R., Galluppi, G.R. and Needleman, P., Purification and sequence analysis of bioactive atrial peptides (atriopeptins), Science, 223, 67, 1984.

    PubMed  CAS  Google Scholar 

  227. Gutkowska, J., Horky, K., Thibault, G., Januszewicz, P., Cant in, M. and Genest, J., Atrial natriuretic factor is a circulating hormone, Biochem. Biophys. Res. Comrnun., 125, 315, 1984.

    Google Scholar 

  228. Dietz, J.R., Release of natriuretic factor from rat heart-lung preparation by atrial distension, Am. J. Physiol., 247, R1093, 1984.

    PubMed  CAS  Google Scholar 

  229. Veress, A.T. and Sonnenberg, H., Right atrial appendectomy reduces the renal response to acute hypervolemia in the rat, Am. J. Physiol., 247, R610, 1984.

    PubMed  CAS  Google Scholar 

  230. Tikkanen, I., Fyhrquist, F., Metsärinne, K. and Leidenius, R., Plasma atrial natriuretic peptide in cardiac disease and during infusion in healthy volunteers, Lancet, 2, 66, 1985.

    PubMed  CAS  Google Scholar 

  231. Lang, R.E., Thölken, H., Ganten, D., Luft, F.C., Ruskoaho, H. and Unger, T., Atrial natriuretic factor: a circulating hormone stimulated by volume loading, Nature, 314, 264, 1985.

    PubMed  CAS  Google Scholar 

  232. Inagami, T., Misono, K.S., Grammer, R.T., Fukumi, H., Maki, M., Tanaka, I., McKenzie, J.C., Takayanagi, R., Pandey, K.N. and Parmentier, M., Biochemical studies of rat atrial natriuretic factor, Clin. Exp. Hypert., Part A, 7, 851, 1985.

    CAS  Google Scholar 

  233. Tang, J., Webber, R.J., Chang, D., Chang, J.K., Kiang, J. and Wei, E.T., Depressor and natriuretic activities of several atrial peptides, Regul. Pept., 9, 53, 1984.

    CAS  Google Scholar 

  234. Thibault, G., Garcia, R., Cantin, M. and Genest, J., Atrial natriuretic factor and urinary kallikrein in the rat: antagonistic factors?, Can. J. Physiol. Pharmacol., 62, 645, 1984.

    PubMed  CAS  Google Scholar 

  235. Chimoskey, J.E., Spielman, W.S., Brandt, M.A. and Heidemann, S.R., Cardiac atria of BIO 14.6 hamsters are deficient in natriuretic factor, Science, 223, 820, 1984.

    PubMed  CAS  Google Scholar 

  236. Sonnenberg, H., Milojevic, S., Chong, C.K. and Veress, A.T., Atrial natriuretic factor: Reduced cardiac content in spontaneously hypertensive rats, Hypertension, 5, 672, 1983.

    PubMed  CAS  Google Scholar 

  237. Hirata, Y., Ganguli, M., Tobian, L. and Iwai, J., Dahl S rats have increased natriuretic factor in atria but are markedly hyporesponsive to it, Hypertension, 6 (Suppl. 1), 148, 1984.

    Google Scholar 

  238. Kobrin, I., Kardon, M.B., Trippodo, N.C., Pegram, B.L. and Fröhlich, E.D., Renal response to acute volume overload in conscious rats with atrial appendectomy, J. Hypert., 3, 145, 1985.

    CAS  Google Scholar 

  239. De Bold, A.J., Borenstein, H.B., Veress, A.T. and Sonnenberg, H., A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats, Life Sei., 28, 89, 1981.

    Google Scholar 

  240. Sagnella, G.A., Nolan, D.A., Shore, A.C. and MacGregor, G.A., Effects of synthetic atrial natriuretic peptides on sodium–potassium transport in human erythrocytes, Clin. Sei., 69, 223, 1985.

    CAS  Google Scholar 

  241. Seidah, N.G., Lazure, C., Chretien, M., Thibault, G., Garcia, R., Cantin, M., Genest, J., Nutt, R.F., Brady, S.F., Lyle, T.A., Paleveda, W.J., Colton, C.D., Ciccarone, T.M. and Veber, D.F., Amino acid sequence of homologous rat atrial peptides: Natriuretic activity of native and synthetic forms, Proc. Natl. Acad. Sei. U.S.A., 81, 2640, 1984.

    CAS  Google Scholar 

  242. Flynn, T.G., De Bold, M.L. and De Bold, A.J., The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties, Biochem. Biophys. Res. Commun., 117, 859, 1983.

    CAS  Google Scholar 

  243. Atlas, S.A., Kleinert, H.D., Camargo, M.J., Januszewicz, A., Sealey, J.E., Laragh, J.H., Schilling, J.W., Lewicki, J.A., Johnson, L.K. and Maack, T., Purification, sequencing and synthesis of natriuretic and vasoactive rat atrial peptide, Nature, 309, 717, 1984.

    PubMed  CAS  Google Scholar 

  244. Seidman, C.E., Duby, A.D., Choi, E., Graham, R.M., Haber, E., Homey, C., Smith, J.A. and Seidman, J.G., The structure of rat preproatrial natriuretic factor as defined by a complementary DNA clone, Science, 225, 324, 1984.

    PubMed  CAS  Google Scholar 

  245. Garcia, R., Thibault, G., Seidah, N.G., Lazure, C., Cantin, M., Genest, J. and Chretien, M., Structure-activity relationships of atrial natriuretic factor (ANF). II. Effect of chain-length modifications on vascular reactivity, Biochem. Biophys. Res. Commun., 126, 178, 1985.

    CAS  Google Scholar 

  246. Misono, K.S., Fukumi, H., Grammer, R.T. and Inagami, T., Rat atrial natriuretic factor: Complete amino acid sequence and disulfide linkage essential for biological activity, Biochem. Biophys. Res. Commun., 119, 524, 1984.

    CAS  Google Scholar 

  247. Geller, D.M., Currie, M.G., Wakitani, K., Cole, B.R., Adams, S.P., Fok, K.F., Siegel, N.R., Eubanks, S.R., Galluppi, G.R. and Needleman, P., atriopeptins: A family of potent biologically active peptides derived from mammalian atria, Biochem. Biophys. Res. Commun., 120, 333, 1984.

    CAS  Google Scholar 

  248. Misono, K.S., Grammer, R.T., Fukumi, H. and Inagami, T., Rat atrial natriuretic factor: Isolation, structure and biological activities of four major peptides, Biochem. Biophys. Res. Commun., 123, 444, 1984.

    CAS  Google Scholar 

  249. Thibault, G., Garcia, R., Carrier, F., Seidah, N.G., Lazure, C., Chretien, M., Cantin, M. and Genest, J., Structure-activity relationships of atrial natriuretic factor (ANF). I. Natriuretic activity and relaxation of intestinal smooth muscle, Biochem. Biophys. Res. Corranun., 125, 938, 1984.

    CAS  Google Scholar 

  250. Currie, M.G., Geller, D.M., Cole, B.R., Boylan, J.G., YuSheng, W., Holmberg, S.W. and Needleman, P., Bioactive cardiac substances: Potent vasorelaxant activity in mammalian atria, Science, 221, 71, 1983.

    PubMed  CAS  Google Scholar 

  251. Grammer, R.T., Fukumi, H., Inagami, T. and Misono, K.S., Rat atrial natriuretic factor. Purification and vasorelaxant activity, Biochem. Biophys. Res. Commun., 116, 696, 1983.

    CAS  Google Scholar 

  252. Sonnenberg, H., Cupples, W.A., DeBold, A.J. and Veress, A.T., Intrarenal localization of the natriuretic effect of cardiac atrial extract, Ann. N.Y. Acad. Sei., 372, 213, 1981.

    Google Scholar 

  253. Briggs, J.P., Steipe, B., Schubert, G. and Schnermann, J., Micropuncture studies of the renal effects of atrial natriuretic substance, Pfluegers Arch., 395, 271, 1982.

    CAS  Google Scholar 

  254. Pollock, D.M. and Banks, R.O., Effect of atrial extract on renal function in the rat, Clin. Sei., 65, 47, 1983.

    CAS  Google Scholar 

  255. Oshima, T., Currie, M.G., Geller, D.M. and Needleman, P., An atrial peptide is a potent renal vasodilator substance, Circ. Res., 54, 612, 1984.

    CAS  Google Scholar 

  256. Needleman, P., Currie, M.G., Geller, D.M., Cole, B.R. and Adams, S.P., Atriopeptins: potential mediators of an endocrine relationship between heart and kidney, Trends Pharmacol. Sei., 5, 506, 1984.

    CAS  Google Scholar 

  257. Keeler, R. and Azzarolo, A.M., Effects of atrial natriuretic factor on renal handling of water and electrolytes in rats, Can. J. Physiol. Pharmacol., 61, 996, 1983.

    PubMed  CAS  Google Scholar 

  258. Koike, H., Sada, T., Miyamoto, M., Oizumi, K., Sugiyama, M. and Inagami, T., Atrial natriuretic factor selectively increases renal blood flow in conscious spontaneously hypertensive rats, Eur. J. Pharmacol., 104, 391, 1984.

    PubMed  CAS  Google Scholar 

  259. Maack, T., Marion, D.N., Camargo, M.J., Kleinert, H.D., Laragh, J.H., Vaughan, E.D., Jr. and Atlas, S.A., Effects of auriculin (atrial natriuretic factor) on blood pressure, renal function, and the renin-aldosterone system in dogs, Am. J. Med., 77, 1069, 1984.

    PubMed  CAS  Google Scholar 

  260. Burnett, J.C., Jr., Granger, J.P. and Opgenorth, T.J., Effects of synthetic atrial natriuretic factor on renal function and renin release, Am. J. Physiol., 247, F863, 1984.

    PubMed  CAS  Google Scholar 

  261. Seymour, A.A., Renal and systemic effects of atrial natriuretic factor, Clin. Exp. Hypert., Part A, 7, 887, 1985.

    CAS  Google Scholar 

  262. Aalkjaer, C., Mulvany, M.J. and Nyborg, N.C.B., Atrial natriuretic factor causes specific relaxation of rat renal arcuate arteries, Br. J. Pharmacol., 86, 447, 1985.

    PubMed  CAS  Google Scholar 

  263. Reinhardt, H.W., Kaczmarczyk, G., Mohnhaupt, R. and Simgen, B., Atrial natriuresis under the condition of a constant renal perfusion pressure. Experiments on conscious dogs, Pfluegers Arch., 389, 9, 1980.

    CAS  Google Scholar 

  264. Januszewicz, P., Gutkowska, J., De Lean, A., Thibault, G., Garcia, R., Genest, J. and Cantin, M., Synthetic atrial natriuretic factor induces release (possibly receptor-mediated) of vasopressin from rat posterior pituitary, Proc. Soc. Exp. Biol. Med., 178, 321, 1985.

    PubMed  CAS  Google Scholar 

  265. Tanaka, I., Misono, K.S. and Inagami, T., Atrial natriuretic factor in rat hypothalamus, atria and plasma: Determination by specific radioimmunoassay, Biochem. Biophys. Res. Commun., 124, 663, 1984.

    CAS  Google Scholar 

  266. Jacobowitz, D.M., Skofitsch, G., Keiser, H.R., Eskay, R.L. and Zamir, N., Evidence for the existence of atrial natriuretic factor–containing neurons in the rat brain, Neuroendocrinology, 40, 92, 1985.

    PubMed  CAS  Google Scholar 

  267. Winquist, R.J., Faison, E.P. and Nutt, R.F., Vasodilator profile of synthetic atrial natriuretic factor, Eur. J. Pharmacol., 102, 169, 1984.

    PubMed  CAS  Google Scholar 

  268. Garcia, R., Thibault, G., Cantin, M. and Genest, J., Effect of a purified atrial natriuretic factor on rat and rabbit vascular strips and vascular beds, Am. J. Physiol., 247, R34, 1984.

    PubMed  CAS  Google Scholar 

  269. Kleinert, H.D., Maack, T., Atlas, S.A., Januszewicz, A., Sealey, J.E. and Laragh, J.H., Atrial natriuretic factor inhibits angiotensin–, norepinephrine-, and potassium-induced vascular contractility, Hypertension, 6 (Suppl. 1), 143, 1984.

    Google Scholar 

  270. Garcia, R., Thibault, G., Gutkowska, J., Hamet, P., Cantin, M. and Genest, J., Effect of chronic infusion of synthetic atrial natriuretic factor (ANF 8–33) in conscious two-kidney, one-clip hypertensive rats, Proc. Soc. Exp. Biol. Med., 178, 155, 1985.

    PubMed  CAS  Google Scholar 

  271. Napier, M.A., Vandlen, R.L., Albers–Schönberg, G., Nutt, R.F., Brady, S., Lyle, T., Winquist, R., Faison, E.P., Heinel, L.A. and Blaine, E.H., Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues, Proc. Natl. Acad. Sei. U.S.A., 81, 5946, 1984.

    Google Scholar 

  272. Winquist, R.J., Napier, M.A., Vandlen, R.L., Arcuri, K., Keegan, M.E., Faison, E.P. and Baskin, E.P., Pharmacology and receptor binding of atrial natriuretic factor in vascular smooth muscle, Clin. Exp. Hypert., Part A, 7, 869, 1985.

    CAS  Google Scholar 

  273. Hirata, Y., Tomita, M., Yoshimi, H. and Ikeda, M., Specific receptors for atrial natriuretic factor (ANF) in cultured vascular smooth muscle cells of rat aorta, Biochem. Biophys. Res. Commun., 125, 562, 1984.

    CAS  Google Scholar 

  274. Winquist, R.J., Faison, E.P., Waldman, S.A., Schwartz, K., Murad, F. and Rapoport, R.M., Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle, Proc. Natl. Acad. Sei. U.S.A., 81, 7661, 1984.

    CAS  Google Scholar 

  275. Waldman, S.A., Rapoport, R.M. and Murad, F., Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues, J. Biol. Chem., 259, 14332, 1984.

    PubMed  CAS  Google Scholar 

  276. Hamet, P., Tremblay, J., Pang, S.C., Garcia, R., Thibault, G., Gutkowska, J., Cantin, M. and Genest, J., Effect of native and synthetic atrial natriuretic factor on cyclic GMP, Biochem. Biophys. Res. Commun., 123, 515, 1984.

    CAS  Google Scholar 

  277. Anand-Srivastava, M.B., Franks, D.J., Cantin, M. and Genest, J., Atrial natriuretic factor inhibits adenylate cyclase activity, Biochem. Biophys. Res. Comm., 121, 855, 1984.

    CAS  Google Scholar 

  278. Seymour, A.A., Marsh, E.A., Mazack, E.K., Stabilito, I.I. and Blaine, E.H., Synthetic atrial natriuretic factor in conscious normotensive and hypertensive rats, Hypertension, 7 (Suppl. 1), 35, 1985.

    CAS  Google Scholar 

  279. Chartier, L., Schiffrin, E., Thibault, G. and Garcia, R., Atrial natriuretic factor inhibits the stimulation of aldosterone secretion by angiotensin II, ACTH and potassium in vitro and angiotensin II–induced steroidogenesis in vivo, Endocrinology, 115, 2026, 1984.

    PubMed  CAS  Google Scholar 

  280. Marsh, E.A., Seymour, A.A., Haley, A.B., Whinnery, M.A., Napier, M.A., Nutt, R.F. and Blaine, E.H., Renal and blood pressure responses to synthetic atrial natriuretic factor in spontaneously hypertensive rats, Hypertension, 7, 386, 1985.

    PubMed  CAS  Google Scholar 

  281. Kihara, M., Nakayama, K., Nakao, K., Sugawara, A., Morii, N., Sakamoto, M., Suda, M., Shimokura, M., Kiso, Y., Imura, H. and Yamori, Y., Accelerated natriuresis induced by synthetic atrial natriuretic polypeptide in spontaneously hypertensive rats, Clin. Exp. Hypert., Part A, 7, 539, 1985.

    CAS  Google Scholar 

  282. Richards, A.M., Nicholls, M.G., Espiner, E.A., Ikram, H., Yandle, T.G., Joyce, S.L. and Cullens, M.M., Effects of a–human atrial natriuretic peptide in essential hypertension, Hypertension, 7, 812, 1985.

    PubMed  CAS  Google Scholar 

  283. Volpe, M., Odell, G., Kleinert, H.D., Müller, F., Camargo, M.J., Laragh, J.H., Maack, T., Vaughan, E.D., Jr. and Atlas, S.A., Effect of atrial natriuretic factor on blood pressure, renin, and aldosterone in Goldblatt hypertension, Hypertension, 7 (Suppl. 1), 43, 1985.

    CAS  Google Scholar 

  284. Keeton, T.K. and Campbell, W.B., The pharmacologic alteration of renin release, Pharmacol. Rev., 31, 81, 1981.

    Google Scholar 

  285. Goodfriend, T.L., Elliott, M.E. and Atlas, S.A., Actions of synthetic atrial natriuretic factor on bovine adrenal glomerulosa, Life Sei., 35, 1675, 1984.

    CAS  Google Scholar 

  286. De Lean, A., Racz, K., Gutkowska, J., Nguyen, T.T., Cantin, M. and Genest, J., Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells, Endocrinology, 115, 1636, 1984.

    PubMed  Google Scholar 

  287. Atarashi, K., Mulrow, P.J., Franco-Saenz, R., Snajdar, R. and Rapp, J., Inhibition of aldosterone production by an atrial extract, Science, 224, 992, 1984.

    PubMed  CAS  Google Scholar 

  288. Chartier, L., Schiffrin, E. and Thibault, G., Effect of atrial natriuretic factor (ANF)-related peptides on aldosterone secretion by adrenal glomerulosa cells: Critical role of the intramolecular disulphide bond, Biochem. Biophys. Res. Commun., 122, 171, 1984.

    CAS  Google Scholar 

  289. Kudo, T. and Baird, A., Inhibition of aldosterone production in the adrenal glomerulosa by atrial natriuretic factor, Nature, 312, 756, 1984.

    PubMed  CAS  Google Scholar 

  290. De Léan, A., Gutkowska, J., McNicoll, N., Schiller, P.W., Cantin, M. and Genest, J., Characterization of specific receptors for atrial natriuretic factor in bovine adrenal zona glomerulosa, Life Sei., 35, 2311, 1984.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Atkinson, J. (1987). Assessment of the Kidney in Relation to Blood Pressure Regulation. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity in the experimental and clinical situation. Developments in Nephrology, vol 19-20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3367-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3367-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8012-5

  • Online ISBN: 978-94-009-3367-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics