Skip to main content

The Application of Histochemistry at the Light Microscopic Level to the Study of Nephrotoxicity

  • Chapter
Nephrotoxicity in the experimental and clinical situation

Part of the book series: Developments in Nephrology ((DINE,volume 19-20))

Abstract

Light microscopy continues to represent the major method by which nephropathies are identified in chemical safety assessment1 and in the clinical situation2. While ultrastructural studies provide a very important technique for detailed subcellular investigations, they generally do not contribute to diagnosis or treatment. Furthermore, these specialized methods are both time-consuming and costly. Histochemical techniques at the light microscopic level provide a broad approach to the study of renal injury that cannot, at present, be investigated as conveniently by electron microscopy or any biochemical method. Haematoxylin and eosin (H&E) is the routine histochemical stain used to vizualize cells, cellular structures and changes associated with tissue injury. Once cell changes have been identified by H&E a host of other histochemical techniques can be applied to help interpret the cause(s) of a lesion. There are, however, examples where subtle or specific cellular changes have not been identified by H&E, and hence more sophisticated techniques are needed. This full range of “routine” to highly “specialized” techniques can all be used to address the question of the molecular changes associated with a toxic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wachsmuth, E.D. (1981). The rationality and relative contribution of histochemical approaches to pharmacology and toxicology. Histochem. J., 13, 793–797.

    PubMed  CAS  Google Scholar 

  2. Heitz, P.U. (1979). Histochemistry as a tool in clinical and experimental pathology. Pathol. Res. Pract., 164, 24–34.

    PubMed  CAS  Google Scholar 

  3. Moffat, D.B. (1982). Morphology of the kidney in relation to nephrotoxicity-portae renales. In Nephrotoxicity, Assessment and Pathogenesis. [Eds. P.H. Bach, F.W. Bonner, J.W. Bridges and E.A. Lock]. Wiley, Chichester, 10–26.

    Google Scholar 

  4. Kriz, W. (1976). Der architektonische und funktionelle Aufbau der Rattenniere. Z. Zellforsch., 82, 495–535.

    Google Scholar 

  5. Kaissling, B. and Kriz, W. (1979). Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol., Springer, Berlin, 56

    Google Scholar 

  6. Kriz, W. and Koepsell, H. (1974). The structural organization of the mouse kidney. Z. Anat. Entwickl. Gesch., 144, 137–163.

    Google Scholar 

  7. Spicer, S.S., Leppi, T.J. and Stoward, P.J. (1965). Suggestions for a histochemical terminology of carbohydrate-rich tissue components. J. Histochem. Cytochem., 13, 599–603.

    Google Scholar 

  8. Stoward, P.J., Barker, S.A., Kent, P.W. and Pearse, A.G.E. (1966). Some British comments on the histochemical nomenclature of mucosubstances. J. Histochem. Cytochem., 14, 681.

    Google Scholar 

  9. Stoward, P. (1980). Criteria for the validation of quantitative histochemical enzyme techniques. In Trends in Enzyme Histochemistry and Cytochemistry. Ciba Found. Symp. 73, Excerpta Medica, Amsterdam, 11–31

    Google Scholar 

  10. Ross, B.D. and Guder, W.G. (1982). Heterogeneity and compartmentation in the kidney. In Metabolic Compartmentation. [Ed. H. Sies]. Academic Press, New York, 363–409.

    Google Scholar 

  11. Bonner, F.W., Bach, P.H. and Dobrota, M. (1982). The biochemistry of the kidney. In Nephrotoxicity, Assessment and Pathogenesis. [Eds. P.H. Bach, F.W. Bonner, J.W. Bridges and E.A. Lock]. Wiley, Chichester, 437–459.

    Google Scholar 

  12. Guder, W.G. and Ross, B.D. (1984). Enzyme distribution along the nephron. Kidney Int., 26, 101–111.

    PubMed  CAS  Google Scholar 

  13. Irintscheff, A. and Davidoff, M. (1981). Ueber die Verteilung einiger Hydrolasen in der Rattenniere. Histochemistry, 71, 463–480.

    PubMed  CAS  Google Scholar 

  14. Cuppage, F.E. and Tate, A. (1967). Repair of the nephron following injury with mercuric chloride. Am. J. Pathol., 51, 405–429.

    PubMed  CAS  Google Scholar 

  15. Moyayama, H., Solomon, R., Sasaki, M., Chi-Wei, L.N. and Fishman, W.H. (1975). Demonstration of lysosomal and extralysosomal sites for acid phosphatase in mouse kidney tubule cells with p-nitrophenylphosphate lead-salt technique. J. Histochem. Cytochem., 23, 439–451.

    Google Scholar 

  16. Neiss, W.F. and Klehn, K.L. (1981). The postnatal development of rat kidney, with special reference to chemodifferentiation of the proximal tubule. Histochemistry, 73, 251–268.

    PubMed  CAS  Google Scholar 

  17. Horiike, K., Arai, R., Tojo, H., Yamano, T., Nozaki, M. and Maeda, T. (1985). Histochemical staining of cells containing flavoenzyme D-amino acid oxidase based on its enzymatic activity: Application of a coupled peroxidation method. Acta Histochem. Cytochem., 18, 539–550.

    Google Scholar 

  18. Wachsmuth, E.D. and Woodhams, R. (1973). Uniform distribution and concentration of aminopeptidase in proximal tubules of pig kidney. J. Histochem. Cytochem., 21, 685–692.

    PubMed  CAS  Google Scholar 

  19. Jedrzejewski, K. and Kugler, P. (1982). Peptidases in the kidney and urine of rats after castration. Histochemistry, 74, 63–84.

    PubMed  CAS  Google Scholar 

  20. Jacobsen, N.O., Jorgensen, F. and Thomsen, A.C. (1967). On the localisation of some phosphatases in three different segments of the proximal tubules in the rat kidney. J. Histochem. Cytochem., 15, 456–469.

    Google Scholar 

  21. Lönnerholm, G. (1973). Histochemical demonstration of carbonic anhydrase activity in the human kidney. Acta Physiol. Scand., 88, 455–468.

    PubMed  Google Scholar 

  22. Lonnerholm, G. (1971). Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol. Scand., 81, 433–439.

    PubMed  CAS  Google Scholar 

  23. Böti, Zs., Sztriha L. and Ormos J. (1981). Histochemical studies of oxidoreductases in rat kidney regenerating after mercuric chloride injury. Exp. Pathol., 19, 247–256.

    Google Scholar 

  24. Walker, D.G. (1963). A survey of dehydrogenase in various epithelial cells in the rat. J. Cell Biol., 17, 255–277.

    PubMed  CAS  Google Scholar 

  25. Sternberg, W.H., Farber, E. and Dunlap, C.E. (1956). Histochemical localisation of specific oxidative enzymes: II. Localisation of diphosphopyridine nucleotide and triphospho-phyridine nucleotide diaphorases and the succinic dehydrogenase system in the kidney. J. Histochem. Cytochem., 4, 266–283.

    Google Scholar 

  26. Böti, Zs., Kobor, J. and Ormos, J. (1982). Activity of glucose-6-phosphatase in regenerating tubular epithelium in rat kidney after necrosis induced with mercuric chloride: A light and electronmicroscopical study. Br. J. Exp. Pathol., 63, 615–624.

    Google Scholar 

  27. Glenner, G.G., Folk, J.E. and McMillan, P.J. (1962). Histochemical demonstration of a gamma-glutamyl transpeptidase-like activity. J. Histochem. Cytochem., 10, 481–489.

    CAS  Google Scholar 

  28. Seyama, S., Iijima, S. and Katunuma, N. (1977). Biochemical and histochemical studies on response of ammonia-producing enzymes for HNCl-induced acidosis. J. Histochem. Cytochem., 25, 448–457.

    Google Scholar 

  29. Novikoff, A.B., Spater, H.W. and Quintana, N. (1983). Transepithelial endoplasmic reticulum in rat proximal convoluted tubule. J. Histochem. Cytochem., 31, 656–661.

    Google Scholar 

  30. Dahlqvist, A. and Brun, A. (1962). A method for the histochemical demonstration of disaccharidase activities, application to invertase and trehalase in some animal tissues. J. Histochem. Cytochem., 10, 294–302.

    CAS  Google Scholar 

  31. McMillan, P.J. (1967). Differential demonstration of muscle and heart type lactic dehydrogenase of rat muscle and kidney. J. Histochem. Cytochem., 16, 21–31.

    Google Scholar 

  32. Cottrell, R.C., Agrelo, C.E., Gangolli, S.D. and Grasso, P. (1976). Histochemical and biochemical studies of chemically induced acute kidney damage in the rat. Fd. Cosmet. Toxicol., 14, 593–598.

    Google Scholar 

  33. Wachstein, M. and Meisel, E. (1954). Influence of experimental renal damage on histochemically demonstrable succinic dehydrogenase activity in the rat. Am. J. Pathol., 30, 147–159.

    Google Scholar 

  34. Wachstein, M. (1955). Histochemical staining reactions of the normally functioning and abnormal kidney. J. Histochem. Cytochem., 3, 246–270.

    PubMed  CAS  Google Scholar 

  35. Wachsmuth, E.D. (1980). Principles of immunocytochemical assays. Proc. Royal Microsc. Soc., 14, 252–255.

    Google Scholar 

  36. Wachsmuth, E.D. (1973). An immunohistochemical method for localization of enzymes in tissue sections: The use of antibody bound to tissue antigen and its property of binding cross reactive soluble antigen. Histochemie, 37, 251–263.

    Google Scholar 

  37. Lojda, Z. (1979). The histochemical demonstration of peptidases by natural substrates. Histochemistry, 62, 305–323.

    PubMed  CAS  Google Scholar 

  38. Gossrau, R. and LOJDA, Z. (1980). Study on dipeptidylpeptidase II ( DPP II ). Histochemistry, 70, 53–76.

    Google Scholar 

  39. Hardonk, M.J., Meskendorp-Haarsma, T.J. and Koudstaal, J. (1978). A histochemical study about the influence of lytic enzymes on plasma membrane enzyme activities in rat liver and kidney. Histochemistry/ 58, 177–181.

    PubMed  CAS  Google Scholar 

  40. Arborgh, B., Ericsson, J.L.E. and Helminen, H. (1971). Inhibition of renal acid phosphatase and aryl sulfatase activity by glutaraldehyde fixation. J. Histochem. Cytochem., 19, 449–451.

    Google Scholar 

  41. Ashford, A.E., Allaway, W.G. and McNully, M.E. (1972). Low temperature embedding in glycol methacrylate for enzyme histochemistry in plant and animal tissues. J. Histochem. Cytochem., 20, 986–990.

    Google Scholar 

  42. Hoshino, M. and Kobayashi, H. (1971). The use of glycol methacrylate as an embedding medium for the histochemical demonstration of acid phosphatase activity. J. Histochem. Cytochem., 19, 575–577.

    PubMed  CAS  Google Scholar 

  43. Russo, J. and Wells, P. (1975). Light microscopic localisation of cytochemical reactions in epoxy-embedded material for electron microscopy. J. Histochem. Cytochem., 23, 921–931.

    Google Scholar 

  44. Mayahara, H. and Ogawa, K. (1980). Ultracytochemical localisation of ouabain-sensitive, potassium-dependent p-nitrophenyl-phosphatase activity in the rat kidney. Acta Histochem. Cytosol., 13, 90–102.

    Google Scholar 

  45. Longley, J. and Fisher, E.R. (1956). A histochemical basis for changes in renal tubular function in young mice. Quart. J. Microscop. Sci., 97, 187– 195.

    Google Scholar 

  46. Wachsmuth, E.D. (1968). Localisation von Aminopeptidase in Gewebeschnitten mit einer neuen Immunofluoreszenztechnik. Histochemie, 14, 282–296.

    PubMed  CAS  Google Scholar 

  47. Lonnerholm, G. (1972). Histochemical demonstration of carbonic anhydrase activity in the human kidney. Acta Pharmacol. Suppl. I, 31, 52–87.

    Google Scholar 

  48. Szokol, M. and S0LTESZ, M.B. (1973). Histochemical study on the oxidative enzymes of the interstitial cells of the renal medulla in rats. Acta Histochem., 46, 120–129.

    PubMed  CAS  Google Scholar 

  49. Wachsmuth, E.D. (1985). Renal heterogeneity at a light microscopic level. In Renal Heterogeneity and Target Cell Toxicity. [Eds. P.H. Bach and E.A.

    Google Scholar 

  50. Schieber, T.H. and Mühlenfeld, E. (1960). Ueber geschlechts-spezifische Unterschiede im Fermentmuster der Ratte. Anat. Anz. Erg. Heft., 120, 41–48.

    Google Scholar 

  51. Muehlenfeld, W.E. (1969). Ueber die Entwicklung und Chemodifferenzierung de Rattenniere unter besonderer Beruecksichtigung der Geschlechtsunterschiede. Histochemie, 18, 97–131.

    CAS  Google Scholar 

  52. Jacobsen, N.O. (1975). Enzyme histochemical observations on the segmentation of the proximal tubules in the kidney of the female rat. Histochemistry, 43, 11–32.

    PubMed  CAS  Google Scholar 

  53. Wachsmuth, E.D. and Stoye, J.P. (1976). The differentiation of proximal and distal tubules in the male rat kidney: The appearance of aldolase isozymes, aminopeptidase and alkaline phosphatase during ontogeny. Histochemistry, 47, 315–337.

    Google Scholar 

  54. Corder, C.N., Collins, J.G., Brannan, T.S. and Sharma, J. (1977). Aldolase reductase and sorbitol dehydrogenase distribution in rat kidney. J. Histochem. Cytochem., 25, 1–8.

    Google Scholar 

  55. Zalme, R.C., Mcdowell, E.M., Nagle, R.B., McNeil, J.S., Flamenbaum, W. and Trump, B.F. (1976). Studies on the pathophysiology of acute renal failure. Virchows. Arch., 22, 197–216.

    Google Scholar 

  56. Boti, ZS., Ivanyi, B., Kobor, J. and Ormos, J. (1979). Histochemical studies on peroxisomes in regenerating proximal tubules of the kidney. Br. J. Exp. Pathol., 60, 620–4.

    Google Scholar 

  57. Wachsmuth, E.D. and Thomann, P. (1982). Testing for renal tolerability. Cefsulodin in rats and rabbits. In Nephrotoxicity, Assessment and Pathogenesis. [Eds. P.H. Bach, J.W. Bridges and E.A. Lock]. Wiley, Chichester, 498–503.

    Google Scholar 

  58. Wachsmuth, E.D. (1981). Nephrotoxicity of cefotiam (CGP 14221/E) in rats and rabbits. Arch. Toxicol., 48, 135–156.

    CAS  Google Scholar 

  59. Wachsmuth, E.D. (1976). Quantitation of enzymes in tissue sections by estimation of hydrolytic activity and antigenic determinants. Acta Histochem., Suppl.-Bd., 16, 221–231.

    CAS  Google Scholar 

  60. Wachsmuth, E.D. (1981). Quantification of nephrotoxicity in rabbits by automated morphometry of alkaline phosphatase stained kidney sections. Histochemistry, 71, 235–248.

    PubMed  CAS  Google Scholar 

  61. Wachsmuth, E.D. (1982). Quantification of acute cephaloridine nephrotoxicity in rats: Correlation of serum and 24 hr urine analyses with proximal tubule injuries. Toxicol. Appi. Pharmacol., 63, 429–445.

    Google Scholar 

  62. Wachsmuth, E.D. (1982). Adaptation of nephrotoxic effects of cephaloridine in subacute rat toxicity studies. Toxicol. Appi. Pharmacol., 63, 446–460.

    Google Scholar 

  63. Hoshino, M. and Kobayashi, H. (1972). Glycol methacrylate embedding in immunocytochemical methods. J. Histochem. Cytochem., 20, 743–745.

    Google Scholar 

  64. Burnett, R. (1982). A study of enzymatic and structural renal damage induced by nephrotoxic agents in the rat. M. Phil, thesis, University of Nottingham.

    Google Scholar 

  65. Gregg, N.J. and Bach, P.H. (1986) Unpublished data.

    Google Scholar 

  66. Kirby, G., Gregg, N.J. and Bach, P.H. (1986) Unpublished data.

    Google Scholar 

  67. Beckstead, J.H.. (1985). Optimal antigen localization in human tissues using aldehyde-fixed plastic-embedded sections. J. Histochem. Cytochem., 33, 954–958.

    PubMed  CAS  Google Scholar 

  68. Alpers, C.E. and Beckstead, J.H. (1984). Enzyme histochemistry of normal and neoplastic transitional epithelium. Am. J. Clin. Pathol., 82, 655–659.

    Google Scholar 

  69. Alpers, C.E. and Beckstead, J.H. (1985). Enzyme histochemistry in plastic-embedded sections of normal and diseased kidneys. Am. J. Clin. Pathol., 83, 605–612.

    Google Scholar 

  70. Troyer, H. and Nusbickel, F.R. (1975). Enzyme histochemistry of undecalcified bone and cartilage embedded in glycol methacrylate. Acta Histochem., 53, 198–202.

    PubMed  CAS  Google Scholar 

  71. Richie, J.P. and Skinner, D.G. (1981). Renal neoplasia. In The Kidney, 2nd Edition, Vol 2. [Eds. B.M. Brenner and F.C. Rector (Jnr)]. W.B. Saunders, Philadelphia, 2109–2136.

    Google Scholar 

  72. Jasmin, G. and Riopelle, J.L. (1968). Renal adenomas induced by dimethyl-lnitrosamine. Enzyme histochemistry in the rat. Arch. Pathol., 85, 298–305.

    Google Scholar 

  73. Ohmori, T., Hiasa, Y., Murata, Y. and William G.M. (1982). Gamma-glutamyltraspeptidase activity in carcinogen-induced epithelial lesions of rat kidney. Gann, 73, 543–548.

    PubMed  CAS  Google Scholar 

  74. Tsuda, H., Moore, M.A., Asamoto, M., Satoh, K., Tsuchida, S., Sato, K., Ichihawa, A. and Ito, N. (1985). Comparison of the various forms of glutathione S-transferase with glucose-6-phosphate dehydrogenase and gamma-glutamyltranspeptidase as markers of preneoplastic and neoplastic lesions in rat kidney induced by N-ethyl-N-hydroxyethylnitrosamine. Gann, 76, 919–929.

    PubMed  CAS  Google Scholar 

  75. Albert, Z., Rzucidlo, Z. and Starzyk, H. (1970). Comparative biochemical and histochemical studies on the activity of garana-glutamyltranspeptidase in the organs of fetuses, newborns and adult rats. Acta Histochem., 37, 34–39.

    PubMed  CAS  Google Scholar 

  76. Albert, Z., Rzucidlo, Z. and Starzyk, H. (1970). Biochemical and histochemical investigations of the gamma–glutamyltranspeptidase in the embryonic and adult organs of man. Acta Histochem., 37, 74–79.

    PubMed  CAS  Google Scholar 

  77. Kunze, E., Schauer, A. and Krussman, G. (1973). Focal loss of alkaline phosphatase and increase of proliferation in preneoplastic areas of the rat urothelium after administration of N-butyl-N(4-hyroxybutyl)-nitrosamine and N-4-(5-nitro-2-furyl)-2-thiazolyl formamide. Z. Krebsforch., 84, 143–160.

    Google Scholar 

  78. Kunze, E., Schauer, A. and Calvör, R. (1969). Sur histochemie von hamblasen Papillomen der ratte, induziert durch dibutylnitrosamin. Naturwissenschaften, 56, 639.

    PubMed  CAS  Google Scholar 

  79. Kunze, E. and Schauer, A. (1971). Enzymhistochemische und autoradiographische Untersuchungen an dibutyl nitrosamin–induzierten harnlasenpapillomen der ratte. Z. Krebsforsch, 74, 146–160.

    Google Scholar 

  80. Kunze, E. (1979). Development of urinary bladder cancer in the rat. Curr. Top. Pathol., 67, 145–232.

    Google Scholar 

  81. Stiller, D. and Rauscher, H. (1971). Irreversible preneoplastic defect in alkaline phosphatases in cancer initiation of transitional epithelium. Exp. Pathol., 5, 255–258.

    Google Scholar 

  82. Ito, N., Matayoshi, K., Arai, M., Yoshiotia, Y., Kamamoto, Y., Makiura, S. and Sugihara, S. (1973). Effect of various factors on induction of urinary bladder tumours in animals by N-butyl-N-(4-hydroxybutyl)nitrosamine. Gann, 64, 151–159.

    PubMed  CAS  Google Scholar 

  83. Ozono, S., Homma, Y. and Oyasu, R. (1985). Gamma-glutamyl-transpeptidase activity in rat urothelium treated with bladder carcinogens. Cancer Lett., 29, 49–57.

    PubMed  CAS  Google Scholar 

  84. Dawson, J., Smith, D., Boak, J. and Peters, T.J. (1979). Gamma-glutamyltransferase in human and mouse breast tumours. Clin. Chim. Acta, 96, 37–42.

    Google Scholar 

  85. De Young, L., Richards, W., Bonzelet, W., Tsai, L. and Boutwell, R. (1978). Localization and significance of gamma-glutamyltranspeptidase in normal and neoplastic mouse skin. Cancer Res., 38, 3697–3701.

    PubMed  Google Scholar 

  86. Fiala, S. and Trout, E (1979). Histochemical detection of high gairma-glutamyltransferase activity in human epithelial tumours. J. Cell Biol., 83, (Abst Z2928).

    Google Scholar 

  87. Fiala, S., Trout, E., Pragani, B. and Fiala, E. (1979). Increased gartma-glutamyltransferase activity in human colon cancer. Lancet, 1, 1145.

    PubMed  CAS  Google Scholar 

  88. Dempo, K., Elliot, K.A., Desmond, W. and Fishman, W.H. (1981). Demonstration of gamma-glutamyltranspeptidase, alkaline phosphatase, CEA, and HGG in human lung cancer. Oncodev. Biol. Med., 2, 21–37.

    Google Scholar 

  89. Moriyama, S., Kawaoi, A. and Hirota, N. (1983). Gamma-glutamyl transpeptidase in putative precancerous thyroid lesions of rats treated with diisopropanolnitrosamine. Br. J. Cancer, 47, 299–307.

    Google Scholar 

  90. Hanigan, M.H. and Pitot, H.C. (1985). Gamma-glutamyltranspeptidase-its role in hepatocarcinogenesis. Carcinogenesis, 6, 165–172.

    PubMed  CAS  Google Scholar 

  91. Vanderlaan, M., Fang, S. and King, E.B. (1982). Histochemistry of NADPH diaphorase and gamma-glutamyltranspeptidase in rat bladder tumours. Carcinogenesis, 3, 397–402.

    PubMed  CAS  Google Scholar 

  92. Varma, R.S. and Varma, R. (eds) (1982). Glycoaminoglycans and Proteoglycans in Physiological and Pathological Processes of Body Systems. S. Karger, Basel.

    Google Scholar 

  93. Culling, C.F.A. (1974). Handbook of Histopathological and Histochemical Techniques. Butterworth, London.

    Google Scholar 

  94. Chayen, J., Bitensky, L. and Butcher, R.G. (1973). Practical Histochemistry. Wiley-Interscience, London.

    Google Scholar 

  95. Horobin, R.W. (1982). Histochemistry. An Explanatory Outline of Histochemistry and Biophysical Staining, Chapter 3. Gustav Fischer, Stuttgart.

    Google Scholar 

  96. Furusato, M. (1977). Ultrastructure and histochemistry of the medullary interstitial matrix of rat kidney. Acta Pathol. Jpn., 27, 331–344.

    Google Scholar 

  97. Scott, D.E. and Dorling, J. (1965). Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions. Histochemie, 5, 221–233.

    PubMed  CAS  Google Scholar 

  98. Yamada, K. (1973). The effect of digestion with Streptomyces hyaluronidase upon certain histochemical reactions of hyaluronic acid-containing tissues. J. Histochem. Cytochem., 21, 794–803.

    Google Scholar 

  99. Yamada, K. (1974). The effect of digestion with chondroitinases upon certain histochemical reactions of mucosaccharide-containing tissues. J. Histochem. Cytochem., 22, 266–275.

    Google Scholar 

  100. Longley, J.B., Burtner, H.J. and Monis, B. (1963). Mucous substances of excretory organs: a comparative study. Ann. N.Y. Acad. Sci., 106, 493–501.

    Google Scholar 

  101. Kashgarian, M. (1985). Mesangium and glomerular disease. Lab. Invest., 52, 569–571.

    PubMed  CAS  Google Scholar 

  102. Bertani, T., Doggi, A., Dozzoni, R., Delaini, F., Sacchi, G., Thoua, Y., Mecca, G., Remuzzi, G. and Donati, M.B. (1982). Adriamycin-induced nephrotic syndrome in rats-sequence of pathologic events. Lab. Invest., 46, 16–23.

    Google Scholar 

  103. McAuliffe, W.G. (1980). Histochemistry and ultrastructure of the inter-stitium of the renal papilla in rats with hereditary diabetes insipidus. Am. J. Anat., 157, 17–26.

    PubMed  CAS  Google Scholar 

  104. McAuliffe, W.G. and Olesen, O.V. (1983). Effects of lithium on the structure of the rat kidney. Nephron, 34, 114–124.

    PubMed  CAS  Google Scholar 

  105. Gloor, F.J. (1978). Changing concept in the pathogenesis and morphology of analgesic nephropathy as seen in Europe. Kidney Int., 13, 27–33.

    PubMed  CAS  Google Scholar 

  106. Burry, A. (1978). Pathology of analgesic nephropathy: Australian experience. Kidney Int., 13, 34–40.

    Google Scholar 

  107. Molland, E.A. (1978). Experimental renal papillary necrosis. Kidney Int., 13, 5–14.

    PubMed  CAS  Google Scholar 

  108. Bach, P.H., Grasso, P., Molland, E.A. and Bridges, J.W. (1983). Changes in the medullary glycosaminoglycan histochemistry and microvascular filling during the development of 2-bromoethanamine hydrobromide-induced renal papillary necrosis. Toxicol. Appl. Pharmacol., 69, 333–344.

    Google Scholar 

  109. Gregg, N., Courtauld, E.A. and Bach, P.H. (1987). High resolution light morphological and microvascular changes in acutely-induced renal papillary necrosis. Br. J. Exp. Pathol, (submitted).

    Google Scholar 

  110. Bach, P.H. and Bridges, J.W. (1985). Chemically induced renal papillary necrosis and upper urothelial carcinoma. CRC Crit. Rev. Toxicol., 15, 217– 439.

    Google Scholar 

  111. Tucker, E., Lupton, C.H. and McManus, J.F.A. (1959). A new inclusion of the visceral epithelium of the renal pelvis: The presence of these inclusions in a papillary carcinoma of the kidney and its metastases. Cancer, 12, 1052– 1057.

    Google Scholar 

  112. Alroy, J., Pauli, B.U. and Hayden, J.E. (1979). Intracytoplasmic lumina in bladder carcinomas. Human Pathol., 10, 549–555.

    CAS  Google Scholar 

  113. Hukill, P.B. and Vidone, R.A. (1965). Histochemistry of mucus and other polysaccarides in tumours. I. Carcinoma of the bladder. Lab. Invest., 14, 1624–1635.

    Google Scholar 

  114. Gregg, N., Ijomah, P., Courtauld, E.A., and Bach, P.H. (1987). Two-stage experimentally induced upper urothelial dysplasia following initiation with N-butyl-N-(4-hydroxybutyl)-nitrosamine and an acutely induced renal papillary necrosis, (submitted for publication).

    Google Scholar 

  115. Iozzo, R. (1985). Biology of disease. Proteoglycans: Structure, function and role in neoplasia. Lab. Invest., 53, 373–396.

    Google Scholar 

  116. Smets, L.A. and Van Beek, W.P. (1984). Carbohydrates of the tumour cell surface. Biochim. Biophys. Acta, 738, 237–249.

    Google Scholar 

  117. Roth, J. (1978). The Lectins, Molecular Probes in Cell Biology and Membrane Research, Exp. Pathol., Suppl. 3, Gustav Fischer Verlag, Jena.

    Google Scholar 

  118. Le Hir, M. and Dubach, U.C. (1982). The cellular specificity of lectin binding in the kidney. I. A light microscopical study in the rat. Histochemistry, 74, 521–530.

    Google Scholar 

  119. Le Hir, M. and Dubach, U.C. (1982). The cellular specificity of lectin binding in the kidney. II. A light microscopic study in the rabbit. Histochemistry, 74, 531–540.

    Google Scholar 

  120. Le Hir, M., Kaissling, B., Koeppen, B.M. and Wade, J.B. (1982). Binding of peanut lectin to specific epithelial cell types in kidney. Am. J. Physiol., 242, C117–C120.

    Google Scholar 

  121. Holthofer, H. (1983). Lectin binding sites in kidney. A comparative study of 14 animal species. J. Histochem. Cytochem., 31, 531–537.

    Google Scholar 

  122. Holthofer, H., Virtanen, I., Pettersson, E., Toernroth, T., Alfthan, O., Linder, E. and Miettinen, A. (1981). Lectins as fluorescence microscopic markers for saccharides in the human kidney. Lab. Invest., 45, 391–399.

    Google Scholar 

  123. Holthofer, H., Miettinen, A., Paasivuo, R., Leht, V.P., Linder, E., Alfthan, O. and Virtanen, I. (1983). Cellular origin and differentiation of renal carcinomas. A fluorescence microscopic study with kidney specific an–tibodies, anti–intermediate filament antibodies, and lectins. Lab. Invest., 49, 317–326.

    Google Scholar 

  124. Roth, J. (1983). Application of immunocolloids in light microscopy. II. Demonstration of lectin binding sites in paraffin sections by the use of lectin–gold or glycoprotein-gold complexes. J. Histochem. Cytochem., 31, 547–552.

    Google Scholar 

  125. Stoward, P.J., Spicer, S.S. and Miller, R.L. (1980). Histochemical reactivity of peanut lectin. Horse radish peroxidase conjugation. J. Histochem. Cytochem., 28, 979–990

    Google Scholar 

  126. Watanabe, M., Muramats, T., Shirane, T. and Ugai, K. (1981). Discrete distribution of binding sites for Dolichos bioflorus agglutinin (DBA) and for peanut agglutinin (PNA) in mouse organ tissues. J. Histochem. Cytochem., 29, 779–790.

    Google Scholar 

  127. Muresan, V., Iwanij, V., Smith, Z.D.J, and Jamieson, J.D. (1982). Purification and use of Liraulin. A sialic acid-specific lectin. J. Histochem. Cytochem., 30, 938–946.

    PubMed  CAS  Google Scholar 

  128. Faraggiana, T., Malchiodi, F., Prado, A. and Churg, J. (1982). Lectin-peroxidase conjugate reactivity in normal human kidney. J. Histochem. Cytochem., 30, 451–458.

    Google Scholar 

  129. Lucocq, J.M. and Roth, J. (1984). Applications of iramunocolloids in light microscopy. III. Demonstration of antigenic and lectin-binding sites in semithin resin sections. J. Histochem. Cytochem., 32, 1075–1083.

    Google Scholar 

  130. Bach, P.H. and Gregg, N.J. (1986). Unpublished data.

    Google Scholar 

  131. Falkenberg, F.W., Müller, E., Riffelmann, H.-D., Behrendt, B. and Waks, T. (1981). The production of monoclonal antibodies against glomerular and other antigens of the human nephron. Renal Physiol., 4, 150–156.

    PubMed  CAS  Google Scholar 

  132. Falkenberg, F.W., Gantenberg, W., Jurgenliemk, I., Mayer, M., Pierard, D., Riffelmann, H.-D., Behrendt, B. and Waks, T. (1983). Development aspects of immunologically characterized proteins. Clin. Biochem., 16, 10–16.

    Google Scholar 

  133. Ledoux, S., Gutkowska, J., Garcia, R., Thibault, G., Cantin, M. and Genest, J. (1982). Immunohistochemical localization of tonin in rat salivary glands and kidney. Histochemistry, 76, 329–340.

    PubMed  CAS  Google Scholar 

  134. Schenk, E.A., Schwartz, R.H. and Lewis, R.A. (1971). Tamm-Horsfall mucoprotein. 1. Localisation in the kidney. Lab. Invest., 25, 92–95.

    Google Scholar 

  135. Wachsmuth, E.D. and Torhorst, A. (1974). Possible precursors of aminopep-tidase and alkaline phosphatase in the proximal tubules of kidney and the crypts of small intestine of mice. Histochemistry, 38, 43–56.

    CAS  Google Scholar 

  136. Wachsmuth, E.D. (1980). Assessment of immunocytochemical techniques with particular reference to the mixed aggregation immune-cytochemical technique. In Trends in Enzyme Histochemistry and Cytochemistry. Ciba Found. Symp. 73. Excerpta Medica, Amsterdam, 135–160.

    Google Scholar 

  137. Taugner, R., Hackenthal, E., Inagami, T., Nobiling, R. and Poulsen, K. (1982). Vascular and tubular renin in the kidneys of mice. Histochemistry, 75, 473–484.

    PubMed  CAS  Google Scholar 

  138. Miettinen, A. and Linder, E. (1976). Membrane antigens shared by renal proximal tubules and other epithelia associated with absorption and excretion. Clin. Exp. Immunol., 23, 568–577.

    Google Scholar 

  139. Mendrick, D.L., Rennke, H.G., Cotran, R.S., Springer, T.A. and ABBAS, A.K. (1983). Monoclonal antibodies against rat glomerular antigen production and specificity. Lab. Invest., 49, 107–117.

    Google Scholar 

  140. Wachsmuth, E.D. and Stoye, J.P. (1976). Differentiation of epithelial cells in human jejunum-localisation and quantification of aminopeptidase, alkaline phosphatase and aldolase isozymes in tissue sections. Histochemie, 48, 101–109.

    CAS  Google Scholar 

  141. Nathrath, W.B.J., Heidenkummer, P., Björklund, V. and Björklund, (1985). Distribution of tissue polypeptide antigen (TPA) in normal human tissues. J. Histochem. Cytochem., 33, 99–109.

    Google Scholar 

  142. Carnegie, J.A., McCully, M.E. and Robertson, H.A. (1980). Embedment in glycol methacrylate at low temperature allows immunofluorescent localization of a labile tissue protein. J. Histochem. Cytochem., 28, 308–310.

    Google Scholar 

  143. Tsuruta, J., Yamamoto, T., Kozono, K. and Kambara, T. (1985). Application of a new method of antibody-enzyme conjugation with maleimide derivative for immunohistochemistry: Hepatocellular production, interstitial tissue distribution and renal cell reabsorption of plasma albumin in the guinea pig. J. Histochem. Cytochem., 33, 767–777.

    Google Scholar 

  144. Fukasawa, K.M., Fukasawa, K., Sahara, N., Harada, M., Kondo, Y. and Nagatsu, I. (1981). Immunohistochemical localization of dipeptidyl aminopeptidase IV

    Google Scholar 

  145. Siegel, G.J., Holm, C., Schreiber, J.H., Desmond, T. and Ernst, S.A. (1984). Purification of mouse brain (Na+,K+)-ATPase catalytic unit, characterisation of antiserum, and inmunocytochemical localised in cerebellum, choroid and kidney. J. Histochem. Cytochem., 32, 1309–1318.

    Google Scholar 

  146. McKenzie, J.C., Tanaka, I., Misono, K.S. and Inagami, T. (1985). Immunocytochemical localisation of atrial natriuretic factor in the kidney, adrenal medulla, pituitary and atrium of rat. J. Histochem. Cytochem., 33, 828–832.

    Google Scholar 

  147. Spicer, S.S., Stoward, P.J. and Tashian, R.E. (1979). The immunohis-tolocalisation of carbonic anhydrase in rodent tissue. J. Histochem. Cytochem., 27, 820–831.

    Google Scholar 

  148. Yokota, S., Tsuji, H. and Kato, K. (1985). Immunocytochemical localisation of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J. Histochem. Cytochem., 33, 191–200.

    PubMed  CAS  Google Scholar 

  149. Lin, C.-T., Garbern, J. and Wu, J.-Y. (1982). Light and electron microscopic immunocytochemical localization of clathrin in rat cerebellum and kidney. J. Histochem. Cytochem., 30, 853–863.

    Google Scholar 

  150. Bendayan, M., Reddy, M.K., Hashimoto, T. and Reddy, J.K. (1985). Immunocytochemical localization of fatty acid metabolizing heat–stable and heat-labile enoyl-coenzyme A (CoA) hydratases in liver and renal cortex. J. Histochem. Cytochem., 31, 509–516.

    Google Scholar 

  151. Ghazarian, J.G. and Garancis, J.C. (1979). Immunofluorescent localization of 25-hydroxyvitamin-D3-la-hydroxyläse ferredoxin in the renal tissue of chick. J. Histochem. Cytochem., 27, 1041–1045.

    PubMed  CAS  Google Scholar 

  152. Nishinaka, H., Minamiura, N., Matoba, K., Furusawa, M. and Yamamoto, T. (1982). On the origin of alpha-glucosidase in human urine. J. Histochem. Cytochem., 11, 1186–1189.

    Google Scholar 

  153. Orstavik, T.B., Nustad, K., Brandtzaeg, P. and Pierce, J.V. (1976). Cellular origin of urinary kallikreins. J. Histochem. Cytochem., 24, 1037–1039.

    Google Scholar 

  154. Simson, J.A.V., Spicer, S.S., Chao, J., Grimm, L. and Margolius, H.S. (1979). Kallikrein localisation in rodent salivary glands and kidney with the immunoglobulin-enzyme bridge technique. J. Histochem. Cytochem., 27, 1567–1576.

    Google Scholar 

  155. Danielson, K.G., Seigo, O. and Huang, P.C. (1982). Immunochemical localisation of metallothionein in rat liver and kidney. J. Histochem. Cytochem., 30, 1033–1039.

    PubMed  CAS  Google Scholar 

  156. Lacasse, J., Ballak, M., Mercure, C., Gutkowska, J., Chapeau, C., Foote, S., Menard, J., Corvol, P., Cantin, M. and Genest, J. (1985). Immunocytochemical localization of renin in juxtaglomerular cells. J. Histochem. Cytochem., 33, 323–332.

    Google Scholar 

  157. Hoffman, N.A. and Hartroft, P.M. (1971). Application of peroxidase-labelled antibodies to the localization of renin. J. Histochem. Cytochem., 19, SUSIS.

    Google Scholar 

  158. . Iwao, H., Nakamura, N., Ikemoto, F. and Yamamoto, K. (1983). Whole body autoradiographic distribution of exogenously administered renin in mice. J. Histochem. Cytochem., 31, 776–782.

    PubMed  CAS  Google Scholar 

  159. Faraggiana, T., Gresik, E., Tanaka, T., Inagami, T. and Lupo, A. (1982). Immunohistochemical localization of renin in the human kidney. J. Histochem. Cytochem., 30, 459–465.

    Google Scholar 

  160. Camilleri, J.-P., Phat, V.N., Bariety, J., Corvol, P. and Menard, J. (1980). Use of a specific antiserum for renin detection in human kidney. J. Histochem. Cytochem., 28, 1343–1346.

    Google Scholar 

  161. Thaete, L.G., Crouch, R.K. and Spicer, S.S. (1985). Inrraunolocalisation of copper-zinc superoxide dismutase. II. Rat. J. Histochem. Cytochem., 33, SOS–SOS.

    Google Scholar 

  162. Thaete, L.G., Crouch, R.K., Schulte, B.A. and SPICER, S.S. (1983). The im-munolocalisation of copper-zinc superoxide dismutase in canine tissues. J. Histochem. Cytochem., 31, 1399–1406.

    Google Scholar 

  163. Nakano, M. (1982). Localisation of renal and intestinal trehalase with immunofluorescence-and enzyme-labelled antibody techniques. J. Histochem. Cytochem., 30, 1243–1248.

    PubMed  CAS  Google Scholar 

  164. Courtoy, P.J., Timpl, R. and Farquhar, M.G. (1982). Comparative distribution of laminin, type IV collagen and fibronectin in the rat glomerulus. J. Histochem. Cytochem., 30, 874–886.

    PubMed  CAS  Google Scholar 

  165. Martinez-Hernandez, A. and Chung, A.E. (1984). The ultrastructural localisation of two basement membrane components Enact in and Laminin in rat tissue. J. Histochem. Cytochem., 32, 289–298.

    Google Scholar 

  166. Oberley, T.D., Chung, A.E., Murphy-Ullrich, J.E. and Mosher, D.F. (1981). Studies on the localisation of the glycoprotein GP–2 within the renal glomerulus in vivo and in cultured kidney cell strains in vitro. J. Histochem. Cytochem., 29, 1237–1242.

    Google Scholar 

  167. Hara, M., Mase, D., Inaba, S., Higuchi, A., Tanizawa, T., Yamanaka, N., Sugisaki, Y., Sado, Y. and Okada, T. (1986). Immunochemical localisation of glomerular basement membrane antigens in various renal diseases. Virchows Arch. Pathol. Anat., 408, 403–419.

    Google Scholar 

  168. Linder, E., Miettinen, A. and Tornroth, T. (1980). Fibronectin as a marker for the glomerular mesangium in immunohistology of kidney biopsies. Lab. Invest., 42, 70–75.

    PubMed  CAS  Google Scholar 

  169. Casanova, S., doanini, U., Zini, N., Morelli, R. and Zucchelli, P. (1983). Immunohistochemical staining of hydroxyethyl–methacrylate–embedded tissues. J. Histochem. Cytochem., 31, 1000–1004.

    Google Scholar 

  170. Shindo, N., Kobayashi, E. and Okada, M. (1984). Immunoelectron microscopic (IEM) studies on glutaraldehyde-fixed renal specimen. J. Histochem. Cytochem., 32, 501–509.

    PubMed  CAS  Google Scholar 

  171. Anders, M.W. (1980). Metabolism of drugs by the kidney. Kidney Int., 18, 636–647.

    PubMed  CAS  Google Scholar 

  172. Rush, G., Smith, J.H., Newton, J.F. and Hook, J.B. (1984). Chemically induced nephrotoxicity: role of metabolic activation. CRC Crit. Rev. Toxicol., 13, 99–160.

    Google Scholar 

  173. Dees, J.H., Parkhill, L.K., Okita, R.T., Yasukochi, Y. and Masters, B.S. (1982). Localization of NADPH-cytochrome P-450 reductase and cytochrome P-450 in animal kidneys. In Nephrotoxicity, Assessment and Pathogenesis. [Eds. P.H. Bach, F.W. Bonner, J.W. Bridges and E.A. Lock]. Wiley, Chichester, 246– 249.

    Google Scholar 

  174. Dees, J.H., Masters, B.S.S., Muller-Eberhard, U. and Johnson, E.F. (1982). Effect of 2,3,7,8-terachlorodibenzo-p-dioxin and phenobarbital on the occurrence and distribution of four cytochrome P-450 isozymes in rabbit kidney. Cancer Res., 42, 1423–1432.

    PubMed  CAS  Google Scholar 

  175. Fleischner, G., Robbins, J. and Arias., I.M. (1972). Immunological studies of Y–protein. A major cytoplasmic organic anion–binding protein in rat liver. J. Clin. Invest., 57, 677–684.

    Google Scholar 

  176. Kirsch, R., Fleischner, G., Feinfeld, D., Goldstel, E., Kamisaka, K. and Aris, I.M. (1975). Renal ligandin-structure, function and role in diagnosis. Clin. Res., 23, A431.

    Google Scholar 

  177. Fleischner, G.M., Robbins, J.B. and Arias, I.M. (1977). Cellular localisation of ligandin in rat, hamster and man. Biochem. Biophys. Res. Commun.,

    Google Scholar 

  178. Campbell, J.A.H., Bass, N.M. and Kirsch, R.E. (1980). Immunohistological localization of ligandin. Cancer, 45, 503–510.

    PubMed  CAS  Google Scholar 

  179. Gee, N.S. and Kenny, A.J. (1985). Proteins of the kidney microvillar membrane. Biochem. J., 230, 753–764.

    PubMed  CAS  Google Scholar 

  180. Kenny, A.J. and Maroux, S. (1982). Topology of microvillar membrane hydrolases of the kidney and intestine. Physiol. Rev., 62, 91–128.

    Google Scholar 

  181. Schwartz, R.H., Lewis, R.A. and Schenk, E.A. (1972). Tamm-Horsfall mucoprotein. 3. Potassium dichromate-induced renal tubular damage. Lab. Invest., 27, 214–217

    Google Scholar 

  182. Bach, P.H., Wirdnam, P.K., Dawnay, A.B. ST. J. and Lu, Q.H. (1984). Unpublished data.

    Google Scholar 

  183. Sabatini, S., Alla, V., Wilson, A., Cruz-Soto, M., De White, A., Kurtzman, N.A. and Arruda, J.A.L. (1982). The effects of chronic papillary necrosis on acid excretion. Pfluegers Arch., 393, 262–268.

    CAS  Google Scholar 

  184. Pich, A., Bussolati, G. and Carbonara, A. (1976). Immunocytochemical detection of casein and casein-like proteins in human tissues. J. Histochem. Cytochem., 24, 940–947.

    PubMed  CAS  Google Scholar 

  185. Molin, S.-O., Rosengren, L., Baudier, J., Hamberger, A. and Haglid, K. (1985). S-100 Alpha-like immunoreactivity in tubules of rat kidney. A clue to the function of a “brain-specific” protein. J. Histochem. Cytochem., 33, 367–374.

    Google Scholar 

  186. Corradino, R.A. and Taylor, A.N. (1983). 1,25-Dihydroxyvitamin D3-induced calcium-binding protein: Localization in organ-cultured embryonic chick duodenum. J. Histochem. Cytochem., 33, 477–479.

    Google Scholar 

  187. Taylor, A.N., McIntosh, J.E. and Bourdeau, J.E. (1982). Immunocytochemical localisation of vitamin D-dependent calcium-binding protein in renal tubules of rabbit, rat and chick. Kidney Int., 21, 765–773.

    PubMed  CAS  Google Scholar 

  188. Orstavik, T.B. (1980). The kallikrein-kinin system in exocrine organs. J. Histochem. Cytochem., 28, 881–889.

    Google Scholar 

  189. Lindop, G.B.M. and Lever, A.F. (1986). Anatomy of the renin-angiotensin system in the normal and pathological kidney. Histopathology, 10, 335–362.

    PubMed  CAS  Google Scholar 

  190. Orstavik, T.B. and Inagami, T. (1982). Localisation of kallikrein in the rat kidney and its anatomical relationship to renin. J. Histochem. Cytochem., 30, 385–390.

    Google Scholar 

  191. Mehlman, M.A. (Ed.) (1984). Renal Effects of Petroleum Hydrocarbons, Princeton Scientific, Princeton.

    Google Scholar 

  192. Alden, C.L., Ridder, G., Stone, L. and Kanerva, (1985). Pathology of petrochemical fuels in male rats. Acute toxicity. In Renal Heterogeneity and Target Cell Toxicity. [Eds. P.H. Bach and E.A. Lock]. Wiley, Chichester, 416–472.

    Google Scholar 

  193. Roy, A.K. and Raber, D.L. (1972). Immunofluorescent localisation of alpha-2u-globulin in the hepatic and renal tissues of rat. J. Histochem. Cytochem., 20, 89–96.

    PubMed  CAS  Google Scholar 

  194. Simpson, M.G., Foster, J.R., Millard, J., Phillips, P., Isaacs, K., Stonard, M.D. and Lock, E.A. (1985). Histochemical observations on the relationship between chemically induced hyaline droplet accumulation in the rat kidney and alpha-2u-globulin. Proc. Royal Microsc. Soc., 20(5), TOX 11.

    Google Scholar 

  195. Antakly, T., Laperche, Y. and Feigelson, P. (1982). Synthesis and immunocytochemical localization of alpha-2u-globulin in the duct cells of the rat submaxillary gland. J. Histochem. Cytochem., 30, 1293–1296.

    PubMed  CAS  Google Scholar 

  196. Cordon-Cardo, C., Bander, N.H., Fradet, Y., Finstad, C.L., Whitmore, W.F., Lloyd, K.O., Oettegen, H.F., Melamed, M.R. and Old, L.J. (1984). Immunoanatomic dissection of the human urinary tract by monoclonal antibodies. J. Histochem. Cytochem., 32, 1035–1040.

    Google Scholar 

  197. Achtstatter, T., Moll, R., Moore, B. and Franke, W.W. (1985). Cytokeratin polypeptide patterns of different epithelia of the human male urogenital tract: Immunofluorescence and gel electrophoretic studies. J. Histochem. Cytochem., 33, 415–426.

    PubMed  CAS  Google Scholar 

  198. Wang, E. and Krueger, J.G. (1985). Application of a unique monoclonal antibody as a marker for non-proliferating subpopulations of cells of some tissue. J. Histochem. Cytochem., 33, 587–594.

    Google Scholar 

  199. Chapman, C.M., Allhoff, E.P., Proppe, K.H. and Prout, G.R. (1983). Use of monoclonal antibodies for the localization of tissue isoantigens A and B in transitional cell carcinoma of the upper urinary tract. J. Histochem. Cytochem., 31, 557–561.

    Google Scholar 

  200. . Waldherr, R. and Schwechheimer, K. (1985). Co-expression of cytokeratin and vimentin intermediate sized filament in renal cell carcinomas. Comparative study of the intermediate sized filament distribution in renal cell car-cinomas and normal human kidney. Virchows Arch. A, 408, 15–27.

    CAS  Google Scholar 

  201. Clyne, D.H., Norris, S.H., Modesto, R.R., Pesce, A.J. and Pollack, V.E. (1973). Antibody enzyme conjugates. The preparation of intermolecular conjugates of horseradish peroxidase and antibody and their use in immunohistology of renal cortex. J. Histochem. Cytochem., 21, 233–246.

    Google Scholar 

  202. Hemming, F.J., Mesguich, P., Morel, G. and Dubois, P.M. (1983). Cryoultramicrotomy versus plastic embedding: Comparative immunocytochemistry of rat anterior pituitary cells. J. Microscopy, 131, 25–34.

    Google Scholar 

  203. Wells, B. (1985). Low temperature box and tissue handling device for embedding biological tissue for immunostaining in electron microscopy. Micron Miscrosc. Acta, 16, 49–53.

    Google Scholar 

  204. Roth, J., Bendayan, M., Carlemalm, E., Villiger, W. and Garavirtro, M. (1981). Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J. Histochem. Cytochem., 29, 663–671.

    Google Scholar 

  205. Carlemalm, E., Garavitro, R.M. and Villiger, W. (1982). Recent development for electron microscopy and an analysis of embedding at low temperature. J. Microsc., 126, 123–143.

    CAS  Google Scholar 

  206. Nakane, P.K. (1971). Application of peroxidase labelled antibodies to the intracellular localization of hormones. Acta Endocrinol. (Suppl.), 153, 190– 204.

    Google Scholar 

  207. Hopfel-Kreiner, I. and Von Mayersback, H. (1978). The influence of glycol methacrylate ( GMA) and paraffin embedding on freeze substituted and fixed tissues for enzyme histochemistry. Acta Histochem., 63, 224–234.

    Google Scholar 

  208. Franklin, R.M. (1984). Immunohistochemistry on semithin sections of hydroxypropyl methacrylate embedded tissues. J. Immunol. Methods, 68, 61–72.

    PubMed  CAS  Google Scholar 

  209. Valentino, K.L., Crumrine, D.A. and Reichardt, L.F. (1985). Lowicryl K4M embedding of brain tissue for immunogold electron microscopy. J. Histochem. Cytochem., 33, 969–973.

    Google Scholar 

  210. Coons, A.H., Leduc, E.H. and Connolly, J.M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J. Exp. Med., 102, 49–60.

    Google Scholar 

  211. Takamiya, H., Batsford, S.R., Tokunaga, J. and Vogt, A. (1979). Immunohistological staining of antigens on semithin sections of sections embedded in plastic (GMA-Quetol 523). J. Immuno. Methods, 30, 277–288.

    Google Scholar 

  212. Takamiya, H., Batsford, S.R. and Vogt, A. (1980). An approach to postembedding staining of protein (immunoglobulin) antigen in plastics: prerequisites and limitations. J. Histochem. Cytochem., 28, 1041–1049.

    PubMed  CAS  Google Scholar 

  213. Mozdzen, J.J. and Keren, D.F. (1982). Detection of immunoglobulin A by immunofluorescence in glycol methacrylate-embedded human colon. J. Histochem. Cytochem., 30, 532–535.

    PubMed  Google Scholar 

  214. Clayton, B.P. (1959). The action of fixatives on the unmasking of lipid. Quart. J. Microsc. Soc., 100, 269–274.

    Google Scholar 

  215. Baker, J.R.J. (1946). Histochemical recognition of lipine. Quart. J. Microsc. Sci., 87, 441–470.

    CAS  Google Scholar 

  216. Elftman, H. (1958). Effects of fixation in lipid histochemistry. J. Cytochem. Histochem., 6, 317–321.

    CAS  Google Scholar 

  217. Baker, J.R. (1957). Lipid globules in cells. Nature, 180, 947–949.

    PubMed  CAS  Google Scholar 

  218. Berg, N.O. (1951). A histological study of masked lipids. Acta Pathol. Microbiol. Scand., Suppl XC, 1–192.

    Google Scholar 

  219. Wolman, M. (1959). The use of chemical agents in the histochemical demonstration of lipids. Acta Histochem., Suppl. 2, 140–154.

    Google Scholar 

  220. High, O.B. (1984). Lipid Histochemistry. Oxford University Press, Oxford.

    Google Scholar 

  221. Bach, P.H. and Scholey, D.J. (1984). Unpublished data.

    Google Scholar 

  222. Bojesen, I. (1974). Quantitative and qualitative analyses of isolated lipid droplets from interstitial cells in renal papillae from various species. Lipids, 9, 835–843.

    PubMed  CAS  Google Scholar 

  223. Burry, A., Cross, R. and Axelsen, R. (1977). Analgesic nephropathy and the renal concentrating mechanism. Pathol. Annu., 12, 1–31.

    Google Scholar 

  224. Molland, E.A. (1976). Aspirin damage in the rat kidney in the intact animal and after unilateral nephrectomy. J. Pathol., 120, 43–48

    PubMed  CAS  Google Scholar 

  225. Molland, E.A. (1982). Renal papillary necrosis produced by long-term fat-free diet. In Nephrotoxicity, Assessment and Pathogenesis. [Eds. P.H. Bach, F.W. Bonner, J.W. Bridges and E.A. Lock]. Wiley, Chichester, 200–205.

    Google Scholar 

  226. Mitatsch, M.J., Hofer, H.O., Gudat, F., Knusli. C., Torhorst, J. and Zollinger, U. (1984). Capillary sclerosis of the lower urinary tract and analgesic nephropathy. Clin. Nephrol., 20, 285–301.

    Google Scholar 

  227. Bach, P.H., Lu, Q.H. and Duffy, M.J. (1986). Unpublished data.

    Google Scholar 

  228. Apffel, C.A. and Baker, J.R. (1964). Lipid droplets in the cytoplasm of malignant cells. Cancer, 17, 176–184.

    PubMed  CAS  Google Scholar 

  229. Masin, F. and Masin, M. (1976). Sudanophilia in exfoliated urothelial cells. Acta Cytol., 20, 573–576.

    PubMed  CAS  Google Scholar 

  230. Kaloyanides, G.J. and Feldman, S. (1981). Gentamicin induces a phospholipidosis in the rat. In Nephrotoxicity [Ed. J.-P. Fillastre]. INSERM, Rouen, 131–139.

    Google Scholar 

  231. Kumar, A. and Rana, S.V.S. (1982). Lipid accumulation in chromium poisoned rats. Int. J. Tissue React., 4, 291–295.

    Google Scholar 

  232. Wong, L.C. and Di Stefano, V. (1966). Rapid accumulation of renal fat in cats after single inhalation of carbon tetrachloride. Toxicol. Appl. Pharmacol., 9, 485–494.

    Google Scholar 

  233. Steiner, G., Bradford, W. and Craig, J.M. (1985). Tetracycline-induced abortion in the rat. Lab. Invest., 14, 1456–1463.

    Google Scholar 

  234. Madhavan, T.V., Tulpule, P.G. and Gopalan, C. (1965). Aflatoxin-induced hepatic fibrosis in rhesus monkeys. Arch. Pathol., 79, 466–469.

    Google Scholar 

  235. Madhavan, T.V. and Suryanarayana Rao, K. (1967). Tubular epithelial reflux in the kidney in aflatoxin poisoning. J. Pathol. Bacteriol., 93, 329–331.

    Google Scholar 

  236. Grond, J., Weening, J.J. and Elema, J.D. (1984). Glomerular sclerosis in nephrotic rats. Comparison of the longterm effects of adriamycin and aminonucleoside. Lab. Invest., 51, 277–285.

    PubMed  CAS  Google Scholar 

  237. Archibald R.W.R. and Orton, C.C.(1970). Specific identification of free and esterified fatty acids in tissue sections. Histochem. J., 2, 411–417.

    PubMed  CAS  Google Scholar 

  238. Trifillis, A.L., Regec, A.L., Hall-Craggs, M. and Trump, B.F. (1985).

    Google Scholar 

  239. Lullman, H., Lullman-Rauch, R. and Wassermann, 0. (1975). Drug induced phospholipidosis. II. Tissue distribution of the amphilic drug chlorphentermine. CRC Crit. Rev. Toxicol., 4, 185–218.

    Google Scholar 

  240. Dixon, K.C. (1968). Fatty deposition: a disorder of the cell. Quart. J. Exp. Physiol., 43, 139–159.

    Google Scholar 

  241. Dunn, M.J. and Hood, V.L. (1977). Prostaglandins and the kidney. Am. J. Physiol., 233, F169–F184.

    CAS  Google Scholar 

  242. Dunn, M.J. and Zambraski, E.J. (1980). Renal effects of drugs that inhibit prostaglandin synthesis. Kidney Int., 18, 609–622.

    PubMed  CAS  Google Scholar 

  243. Wright, J.T. and Corder, C.N. (1979). NAD+-15-Hydroxyprostaglandin dehydrogenase distribution in rat kidney. J. Histochem. Cytochem., 27, 657– 664.

    Google Scholar 

  244. Smith, W.L. and Wilkin, G.P. (1977). Distribution of prostaglandin-forming cyclooxygenase in rat, rabbit and guinea pig kidney as determined by immunofluorescence. Fed. Proc., 36, 309.

    Google Scholar 

  245. Smith, W.L. and Wilkin, G.P. (1977). Immunochemistry of prostaglandin endoperoxide-forming cyclo-oxygenases: The detection of the cyclooxygenases in rat, rabbit and guinea pig kidneys by immunofluorescence. Prostaglandins, 13, 873–900.

    PubMed  CAS  Google Scholar 

  246. Smith, W.L. and Bell, T.G. (1978). Immunohistochemical localisation of the prostaglandin-forming cyclooxygenase in renal cortex. Am. J. Physiol., 235, F451–F457.

    PubMed  CAS  Google Scholar 

  247. Mori, Y. and Mine, M. (1981). The localisation of prostaglandins in the rabbit kidney demonstrated with indirect immunofluorescence. Biomed. Res., 2, 281–284.

    Google Scholar 

  248. Perez, G. and McGuckin, J. (1972). Cellular localisation of prostaglandin A2 in the rat kidney. Prostaglandins, 2, 393–398.

    PubMed  CAS  Google Scholar 

  249. Janszen, F.H.A. and Nugteren, D.H. (1971). Histochemical localisation of prostaglandin synthetase. Histochemie, 27, 159–164.

    PubMed  CAS  Google Scholar 

  250. Janszen, F.H.A. and Nugteren, D.H. (1973). A histochemical study of the prostaglandin biosynthesis in the urinary system of rabbit, guinea pig, golden hamster and rat. Adv. Bio. Sci., 9, 287–292.

    Google Scholar 

  251. Litwin, J.A. (1977). Does diaminobenzidine demonstrate prostaglandin synthetase? A study on polyunsaturated fatty acid-induced DAB oxidation in sheep vesicular glands and rabbit kidney medulla. Histochemistry, 53, 301–315.

    CAS  Google Scholar 

  252. Litwin, J. A. (1979). Histochemistry and cytochemistry of 3,3-diaminobenzidine. A review. Folia Histochem. Cytochem., 17, 3–28.

    Google Scholar 

  253. Al-Ani, L.M. and Fourman, J. (1979). Histochemical study of prostaglandin synthetase in the mouse kidney. IRCS Med. Sci. 7, 379.

    CAS  Google Scholar 

  254. Bach, P.H. and Bridges, J.W. (1984). The role of prostaglandin synthase mediated metabolic activation of analgesics and non-steroidal antiinflammatory drugs in the development of renal papillary necrosis and upper urothelial carcinoma. Prostagland. Leukotri. Med., 15, 251–274.

    Google Scholar 

  255. Smith, W.L., Bell, T.G. and Needleman, P. (1979). Increased renal tubular synthesis of prostaglandins in the rabbit kidney in response to ureteral obstruction. Prostaglandins, 18, 269–277.

    PubMed  CAS  Google Scholar 

  256. Tannenbaum, J., Purkerson, M.L and Klahr, S. (1983). Effects of unilateral ureteral obstruction on metabolism of renal lipids in the rat. Am. J. Physiol., 245, F254–F262.

    PubMed  CAS  Google Scholar 

  257. Morrison, A.R., Nishikawa, K. and Needleman, P. (1978). Thromboxane A2 biosynthesis in the ureter obstructed isolated perfused kidney of the rabbit. J. Pharmacol. Exp. Ther., 205, 1–18.

    Google Scholar 

  258. Altman, F.P., Moore, D.S. and Chayen, J. (1975). The direct measurement of cytochrome P450 in unfixed tissue sections. Histochemistry, 41, 227–232.

    PubMed  CAS  Google Scholar 

  259. Novikoff, A.B. and Goldfischer, S. (1969). Visualisation of peroxisomes (microsomes) and mitochondria with diaminobenzidine. J. Histochem. Cytochem., 17, 675–680.

    Google Scholar 

  260. Goldfischer, S. (1969). Further observations on the peroxidatic activities of microbodies (peroxisomes). J. Histochem. Cytochem., 17, 681–685.

    PubMed  CAS  Google Scholar 

  261. Essner, E. (1970). Observations on hepatic and renal peroxisomes (microbodies) in the developing chick. J. Histochem. Cytochem., 18, 80–91.

    PubMed  CAS  Google Scholar 

  262. Goeckermann, J.A. and VIGH, E.I. (1975). Peroxisome development in the metanephric kidney of mouse. J. Histochem. Cytochem., 23, 957–973.

    Google Scholar 

  263. Reddy, J.K., Rao, M.S., Moody, D.E. and Qureshi, S.A. (1976). Peroxisome development in the regenerating pars recta (Pg segment) of proximal tubules of the rat kidney. J. Histochem. Cytochem., 24, 1239–1248.

    Google Scholar 

  264. Beard, M.E., Baker, R., Conomos, P., Pugatch, D. and Holtzman, E. (1985). Oxidation of oxalate and polyamines by rat peroxisome. J. Histochem. Cytochem., 33, 460–464.

    Google Scholar 

  265. Gilloteaux, J. and Steggles, A.W. (1983). Histoenzymatic alterations in kidney catalase activity following hormonal treatment of Syrian hamsters. Cell Biol. Int. Rep., 7, 31–33.

    PubMed  CAS  Google Scholar 

  266. Asghar, K., Reddy, B.G. and Krishna, G. (1975). Histochemical localization of glutathione in tissues. J. Histochem. Cytochem., 23, 774–779.

    Google Scholar 

  267. Chieco, P. and Boor, P.J. (1983). Use of low temperatures for glutathione histochemical stain. J. Histochem. Cytochem., 31, 975–976.

    Google Scholar 

  268. Smith, M.T., Loveridge, N., Wills, E.D. and Chayen, J. (1979). The distribution of glutathione in the rat liver lobule. Biochem. J., 182, 103–108.

    Google Scholar 

  269. Bach, P.H. (1981). Unpublished data.

    Google Scholar 

  270. Dolezel, S. (1967). Monoaminergic innervation of kidney aorticorenal ganglion-a sympathetic ganglion supply renal vessels. Experientia, 23, 109–111.

    PubMed  CAS  Google Scholar 

  271. Falck, B., Hillarp, B.F., Thieme, G. and Torp, A. (1961). Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem., 10, 348–354.

    Google Scholar 

  272. Dinerstein, R.J., Vannice, J., Henderson, R.C., Roth, L.J., Goldberg, L.I. and Hoffmann, P.C. (1979). Histofluorescence techniques provide evidence for dopamine–containing neuronal elements in canine kidney. Science, 205, 497– 499.

    Google Scholar 

  273. Danscher, G. and Moller-Madsen, B. (1985). Silver amplification of mercury sulfide and selenide: A histochemical method for light and electron microscopic localization of mercury in tissue. J. Histochem. Cytochem., 33, 219–228.

    PubMed  CAS  Google Scholar 

  274. Sumi, Y., Muraki, T. and Suzuki, T. (1980). Histochemical staining in cadmium with benzothiazolylazophenol derivatives. Histochemistry, 68, 231– 236.

    Google Scholar 

  275. Morselt, A.F.W., Broekaert, D., Jongstra-Spaapen, E.J., Copius-Peereboom-Stegeman, J.H.J. (1984). Histochemical changes in protein disulphide bonds in rat liver and kidney after chronic cadmium administration, and the possible relation to metallothionein. Arch. Toxicol., 55, 155–160.

    Google Scholar 

  276. Morselt, A.F.W., Van de Hamer, C.J.A., Prinsen, L., Jongstra-Spaapen, E.J., Copius Peereboom-Stegeman, J.H.J, and Bosch, K.S. (1985). Large increase in disulphide bonds containing cytosol proteins after chronic cadmium

    Google Scholar 

  277. Benard, P., Burgat, V. and Rico, A.G. (1985). Applications of whole-body autoradiography in toxicology. CRC Crit. Rev. Toxicol., 15, 181–216.

    Google Scholar 

  278. Housley, T.L. and Fisher, D.B. (1976). The efficiency of 14C detection in autoradiographies of semithin plastic sections. J. Histochem. Cytochem., 23, 678–680.

    Google Scholar 

  279. Rogers, A.W. (1979). Techniques of Autoradiography, 3rd edition. Elsevier/ North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  280. Williams, M.A. (1977). Autoradiography and Immuncytochemistry. Practical Methods in Electron Microscopy, Vol. 6. [Series Ed. A.M. Glauert]. North-Holland, Amsterdam.

    Google Scholar 

  281. Bergeron, J.J.M., Rachubinski, R., Searle, N., Borts, D., Sikstrom, R. and Posner, B.I. (1980). Polypeptide hormone receptors in vivo: Demonstration of insulin binding to adrenal gland and gastrointestinal epithelium by quantitative radioautography. J. Histochem. Cytochem., 28, 824–835.

    Google Scholar 

  282. Miyazaki, H., Matsunaga, Y. and Hashimoto, M. (1978). Distribution of [14C]labelled purines in the mouse. A whole body autoradiographic assessment of purine metabolism in mammals. J. Histochem. Cytochem., 26, 661–676.

    Google Scholar 

  283. Schultze, B., Maurer, W. and Hagenbusch, H. (1976). A two emulsion autoradiographic technique and the discrimination of the three different types of labelling after double labelling with 3H-and 3C-thymidine. Cell Tissue Kinet., 9, 245–255.

    PubMed  CAS  Google Scholar 

  284. Murakami, M. and Hirosawa, K. (1977). Electron microscope autoradiography of mouse kidney after administration of Cd. J. Electron. Microsc., 26, 275.

    Google Scholar 

  285. Murakami, M., Tohyama, C., Sano, K., Kawamura, R. and Kubota, K. (1983). Autoradiography studies on the localisation of metallothionein in proximal tubular cells of the rat kidney. Arch. Toxicol., 53, 185–192.

    Google Scholar 

  286. Hellman, B., Argy, R. and Ullberg, S. (1984). The in vivo uptake of tritiated thymidine as a potential short-term test of toxic effects of polycyclic aromatic hydrocarbons in different organs. Toxicology, 29, 183–194.

    PubMed  CAS  Google Scholar 

  287. Toback, F.G., Dodd, R.C., Maier, E.R. and Havener, L.J. (1983). Amino acid administration enhances renal protein metabolism after acute tubular necrosis. Nephron, 33, 238–243.

    PubMed  CAS  Google Scholar 

  288. Balazs, T. (1974). Development of tissue resistance to toxic effects of chemicals. Toxicology, 2, 247–255.

    PubMed  CAS  Google Scholar 

  289. Laurent, G., Maldague, P., Carlier, M.B. and Tulkens, P.M. (1983). Increased renal DNA synthesis in vivo after administration of low doses of gentamicin to rats. Antimicrob. Agents Chemother., 24, 586–593.

    Google Scholar 

  290. Reiter, R.J. (1965). Cellular proliferation and deoxyribonucleic acid synthesis in compensating kidneys of mice and the effect of food and water. Lab. Invest., 14, 1636–1643.

    PubMed  CAS  Google Scholar 

  291. Gregg, N., Ijomah, P., Mattingley, G., Courtauld, E.A. and Bach, P.H. (1986). The hyperplastic response of the renal pelvis and ureter epithelial cell layer to an acutely–induced renal papillary necrosis, (submitted for publication).

    Google Scholar 

  292. Aukland, K. (1980). Methods for measuring renal blood flow; total flow and regional distribution. Annu. Rev. Physiol., 42, 543–555.

    Google Scholar 

  293. Solez, K., Miller, M., Quarles, P.A., Finer, P.M. and Hepstinstall, R.H. (1974). Experimental papillary necrosis of the kidney. IV. Medullary plasma flow. Am. J. Pathol., 76, 521–528.

    Google Scholar 

  294. Solez, K., Ponchak, S., Buono, R.A., Vernon, N., Finer, P.M., Miller, M. and Hepstinstall, R.H. (1974). Inner medulla plasma flow in the kidney with ureteral obstruction. Am. J. Physiol., 231, 1315–1321.

    Google Scholar 

  295. Davies, D.J. and Tange, J.D. (1982). Factors influencing the severity and progress of ethyleneimine–induced papillary necrosis. J. Pathol., 137, 305– 319.

    Google Scholar 

  296. Molland, E.A. (1976). Unpublished data.

    Google Scholar 

  297. Vernon-Booth, B. (1972). The Macrophage. Cambridge University Press, Cambridge, 94.

    Google Scholar 

  298. Joris, I., De Girolami, U., Wortham, K. and Majno, G. (1982). Vascular labelling with Monastral Blue B. Stain Technol., 57, 177–183.

    PubMed  CAS  Google Scholar 

  299. Zimmerhackl, B., Parekh, N., Brinkhus, H. and Speinhausen, M. (1983). The use of fluorescent labeled erythrocytes for intravital investigation of flow and local hematocrit in glomerular capillaries in the rat. Int. J. Microcirc. Clin. Exp., 2, 119–129.

    Google Scholar 

  300. Dolcini, H.A., Zaidman, I., Lichtenberg, F. and Gray, S.J. (1960). Effects of serotonin on circulation in the rat kidney. Am. J. Physiol., 199, 1153– 1156.

    Google Scholar 

  301. Sippel, T.O. (1973). The histochemistry of thiols and disulphides. I. The use of N-(4-aminophenyl)maleimide for demonstrating thiol groups. Histochem. J., 5, 413–423.

    Google Scholar 

  302. . Hanssen, O.E. (1958). A histochemical method for evaluation of excreted sodium ferrocyanide in isolated tubules of the mouse kidney. Acta Pathol. Microbiol. Scand., 44, 363–371.

    CAS  Google Scholar 

  303. Baines, A.D., Baines, C.J. and De Rouffignac, C. (1969). Functional heterogeneity of nephrons. I. Intraluminal flow velocities. Pflugers Arch., 308, 244–259.

    Google Scholar 

  304. Hanssen, O.E. (1961). The relationship between glomerular filtration and length of the proximal convoluted tubule in mice. Acta Pathol. Microbiol. Scand., 53, 265–79.

    Google Scholar 

  305. De Rouffignac, C. and Bonvalet, J.P. (1972). Use of sodium ferrocyanide as glomerular indicator to study the functional heterogeneity of nephrons. J. Biol. Med., 45, 243–253.

    Google Scholar 

  306. Bach, P.H. and Bridges, J.W. (1982). Chemical associated renal papillary necrosis. In Nephrotoxicity: Assessment and Pathogenesis. [Eds. P.H. Bach, F.W. Bonner, J.W. Bridges and E.A. Lock]. Wiley, Chichester, 437–459.

    Google Scholar 

  307. Kleeman, C.R. and Epstein, F.H. (1956). Fate and distribution of 59Fe labelled ferrocyanide in humans and dogs. Proc. Soc. Exp. Biol. Med., 92, 228–233.

    Google Scholar 

  308. Graham, R.C. and Karnovsky, M.J. (1966). Glomerular permeability: Ultrastructural cytochemical studies using peroxidases as protein traces. J. Exp. Med., 124, 1123–1133.

    Google Scholar 

  309. Graham, R.C. and Karnovsky, M.J. (1966). The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem., 14, 291–302.

    Google Scholar 

  310. Anderson, W.A. (1972). The use of exogenous myoglobin as an ultrastructural tracer. Reabsorption and translocation of protein by the renal tubule. J. Histochem. Cytochem., 20, 672–684.

    Google Scholar 

  311. Straus, W. (1975). Altered reabsorption of protein by the renal cortex in rats treated with hypertonic saline or mannitol. J. Histochem. Cytochem., 23, 707–721.

    Google Scholar 

  312. Straus, W. (1977). Altered renal cortical reabsorption of protein and urinary excretion of sodium in relation to vascular leakage induced by horseradish peroxidase. J. Histochem. Cytochem., 25, 215–225.

    Google Scholar 

  313. Sjaastad, Ø Blom, A.K. and Haye, R. (1984). Hypotensive effects in cats caused by horseradish peroxidase mediated by metabolites of arachidonic acid. J. Histochem. Cytochem., 32, 1328–1330.

    Google Scholar 

  314. Bareggi, R., Narducci, P., Grill, V., Mallardi, F., Zweyer, M. and Fusaroli, P. (1986). Localization of an aminoglycoside (streptomycin) in the inner ear after its systemic administration. Histochemistry, 84, 237–240.

    PubMed  CAS  Google Scholar 

  315. Egorin, M.J., Hildebrand, R.C., Cimino, E.F. and Bachur, N.R. (1974). Cytofluorescence localization of adriamycin and daunorubicin. Cancer Res., 34, 2243–2245.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Bach, P.H., Gregg, N.J., Wachsmuth, E.D. (1987). The Application of Histochemistry at the Light Microscopic Level to the Study of Nephrotoxicity. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity in the experimental and clinical situation. Developments in Nephrology, vol 19-20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3367-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3367-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8012-5

  • Online ISBN: 978-94-009-3367-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics