Skip to main content

Climatic Conditions and Energy Metabolism of Laying Hens

  • Chapter
Energy Metabolism in Farm Animals

Part of the book series: Current Topics in Veterinary Medicine and Animal Science ((CTVM,volume 44))

  • 256 Accesses

Abstract

The effects of climatic conditions such as temperature, wind speed, humidity, light and air composition on metabolic and production rate are discussed. The physiological and production responses are at the same time depending on the factors: breed, age, body weight, activity, feathering, food intake, nutritional and temperature history.

The mass exponent in the metabolic body weight unit, which is used for intraspecific comparison, varies generally between 0.60 and 0.67.

There is a direct depressing effect of ambient temperature on the increase of food intake per centigrade at decreasing temperatures and on egg production at increasing temperatures.

For comparative and predictive purposes it is necessary to incorporate many factors in a “total effective ambient temperature”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arieli, A., Meltzer, A. and Berman, A., 1979. Seasonal acclimatisation in the hen. Br. Poult. Sci. 20: 505–513.

    Article  PubMed  CAS  Google Scholar 

  • Aulie, A., 1977. The effect of intermittent cold exposure on the thermoregulatory capacity of bantam chicks, Gallus domesticus. Comp. Biochem. Physiol. 56a: 545–549.

    Article  Google Scholar 

  • Balnave, D., 1974. Biological factors affecting energy expenditure. In: T.R. Morris and B.M. Freeman (Editors), Energy requirements of poultry. Br. Poult. Sci. Ltd., Edinburgh, pp. 25–46.

    Google Scholar 

  • Becker, C, 1983. Die Bedeutung von Kürpergewicht sowie Körpergrösse und Körperkondition für das produktive Adaptionsvermögen der Legehenne unter hoher Umgebungstemperatur. Thesis, Berlin, 154 pp.

    Google Scholar 

  • Berman, A. and Snapir, N., 1965. The relation of fasting and resting metabolic rates to heat tolerance in the domestic fowl. Br. Poult. Sci. 6: 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Boshouwers, F.M.G. and Nicaise, E., 1987. Physical activity and energy expenditure of laying hens as affected by light intensity. Br. Poult. Sci. 28: 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury, J.H. and Avery, P., 1980. Energy consumption and ventilatory mechanisms in the excercising fowl. Comp. Biochem. Physiol. 66a: 439–445.

    Article  Google Scholar 

  • Brody, S., 1945. Bioenergetics and growth. Reinhold Publishing Corp oration, NewYork, 1023pp.

    Google Scholar 

  • Damme, K. and Pirchner, F., 1984. Genetic differences of feather-loss in layers and effects on production traits. Arch. Geflügelk. 48 (6): 215–222.

    Google Scholar 

  • Damme, K., Pirchner, F., Willeke, H. and Eichinger, H., 1986. Fasting metabolic rate in hens. 2. Strain differences and heritability estimates. Po. Sci. 65: 616–620.

    CAS  Google Scholar 

  • Deaton, J.W., May, J.D., Kubena, L.F. and Reece, F.N., 1976. Physiological changes associated with acclimation of broiler chickens to constant temperatures. Int. J. Biometeorol. 20: 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Decuypere, E., 1979. Effects of incubation temperature pattern on morphological, physiological and reproduction criteria in Rhode Island Red birds. Agric. (Heverlee), 27: 65–280.

    Google Scholar 

  • Egbunike, G.N., 1979. The relative importance of dry-and wet-bulb temperatures in the thermorespiratory function in the chicken. Zentralblatt für Veterinärmedizin A26: 573–579.

    Google Scholar 

  • Emmans, G.C. and Charles, D.R., 1977. Climatic environment and poultry feeding in practice. In: W. Haresign, H. Swan and D. Lewis (Editors), Nutrition and the Climatic Environment. Butterworths, London, pp. 31–50.

    Google Scholar 

  • Farrell, D.J., 1975. A comparison of the energy metabolism of two breeds of hens and their reciprocal cross using respiration calorimetry. Br. Poult. Sci. 16: 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, B.M., 1964. The effect of diet and breed upon the oxygen requirements of the chicken during the period of rapid growth. Br. Poult. Sci. 4: 169–178.

    Google Scholar 

  • Freeman, B.M., 1984. Some responses of the domestic fowl to environmental temperature. Arch, exper. Vet. med. 38 (3): 392–398.

    CAS  Google Scholar 

  • Garrow, J.S., 1986. Chronic effects of over-and under-nutrition on thermogenesis. Internat. J. Vit. Nutr. Res. 56: 201–204.

    CAS  Google Scholar 

  • Hayssen, V. and Lacy, R.C. 1985. Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp. Biochem. Physiol. 81A (4): 741–754.

    Article  Google Scholar 

  • Heusner, A.A., 1985. Body size and energy metabolism. Ann. Rev. Nutr., 5: 267–293.

    Article  CAS  Google Scholar 

  • Johnson, R.J. and Farrell, D.J., 1985. Relationship between starvation heat production and body size in the domestic fowl. Br. Poult. Sci. 26: 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Kampen, M. van, 1974. Physical factors affecting energy expenditure. In: T.R. Morris and B.M. Freeman (Editors), Energy requirements of poultry Br. Poult. Sci. Ltd., Edinburgh, pp. 47–59.

    Google Scholar 

  • Kampen, M. van, 1976. Activity and energy expenditure in laying hens. J. agric. Sci. (Cambridge) 87: 81–88.

    Article  Google Scholar 

  • Kampen, M. van, Mitchell, B.W. and Siegel, H.S., 1979. Thermoneutral zone of chickens as determined by measuring heat production, respiration rate, and electromyographic and electroencephalographic activity in light and dark environments and changing ambient temperatures. J. agric. Sci. (Cambridge) 92: 219–226.

    Article  Google Scholar 

  • Kampen, M. van, 1981. Thermal influences on poultry. In: J.E. Clark (Editor), Environmental aspects of housing for animal production. Butterworths, London, pp. 131–147.

    Google Scholar 

  • Kampen, M. van, 1984. Physiological responses of poultry to ambient temperature. Arch, exper. Vet. Med. 38 (3):384–391.

    Google Scholar 

  • Kendeigh, S.C., Dol’nik, V.R., Gavrilov, V.M., 1977. Avian energetics. In: J. Pinowski and S.C. Kendeigh (Editors), Granivorous birds in ecosystems. Cambridge Univ. Press, Cambridge, pp. 127–204.

    Google Scholar 

  • Kirkwood, J.K., 1983. A limit to metabolisable energy intake in mammals and birds. Comp. Biochem. Physiol. 75A: 1–3.

    Article  Google Scholar 

  • Klandorf, H., Sharp, P.J. and MacLeod, M.G., 1981. The relationship between heat production and concentrations of plasma thyroid hormones in the domestichen. Gen. comp. Endocr. 45: 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Kleiber, M., 1947. Body size and metabolicrate. Physiol. Rev. 27: 511–541.

    PubMed  CAS  Google Scholar 

  • Koong, L.J., Ferrell, C.L. and Nienaber, J.A., 1985. Assessment of interrelationships among levels of intake and production, organ size and fasting heat production in growing animals. J. Nutr. 115: 1383–1390.

    PubMed  CAS  Google Scholar 

  • MacLeod, M.G., 1984. Factors influencing the agreement between thermal physiology measurements and field performance in poultry. Arch, exper. Vet. Med. 38 (3): 399–410.

    CAS  Google Scholar 

  • MacLeod, M.G. and Jewitt, T.R., 1984. Circadian variation in the heat production rate of the domestic fowl, Gallus domesticus: effects of limiting feeding to a single daily meal. Comp. Biochem. Physiol. 78a: 687–690.

    Article  Google Scholar 

  • Marsden, A. and Morris, T.R., 1980. Egg production at high temperatures. In: Intensive Animal Production in Developing Countries. Occasional publication no. 4. Brit. Soc. Anim. Prod., London.

    Google Scholar 

  • McArthur, A.J., 1981. Thermal insulation and heat loss from animals. In: J.A. Clark (Editor), Environmental aspects of housing for animal production. Butterworth, London, pp. 37–60.

    Google Scholar 

  • Nichelmann, M., Baranyiova, E., Goll, R. and Tzschentke, B., 1986. Influence of feather cover on heat balance in laying hens (Gallus domesticus). J. therm. Biol. 11 (2):121–126.

    Article  Google Scholar 

  • Picard, M., 1986. Heat effects on the laying hen — protein nutrition and food intake. Zootechnica International 5: 64–67.

    Google Scholar 

  • Poczopko, P., 1971. Metabolic levels in adult homeotherms. Acta Theriol. 16: 1–21.

    Google Scholar 

  • Pohl, H., 1970. Zur Wirkung des Lichtes auf diecircadiane Periodik des Stoffwechsels und der Aktivität beim Buchfinken (Fringilla coelebs L.). Z. vergl. Physiol. 66: 141–163.

    Article  Google Scholar 

  • Polin, D., 1983. The influence of environmental temperature on the feed intake of laying hens examined. Feedstuffs USA 55 (5): 21–22.

    Google Scholar 

  • Prothero, J., 1986. Scaling of energy metabolism in unicellular organisms: a re-analysis. Comp. Biochem. Physiol. 83A (2): 243–248.

    Article  Google Scholar 

  • Richards, S.A., 1976. Evaporative water loss in domestic fowls and its partition in relation to ambient temperature. J. agric. Sci. (Cambridge) 87: 527–532.

    Article  Google Scholar 

  • Rogers, S.R. and Pesti, G.M., 1986. Comparison of protein utilization in morning vs. afternoon fed chicks. Po. Sci. 65 (suppl. 1): 113 (abstract).

    Google Scholar 

  • Rufeger, H. and Bottin, U., 1980. Der Ruhe-Nüchtern-Sauerstoffver-brauch der Albinoratte und seine Abhängigkeit von der Körpermasse bei Ernährung mit proteinhaltiger und N-freier Kost. Tierphysiol. Tierernähr. u. Futtermittelkd. 43: 1–17.

    Article  CAS  Google Scholar 

  • Schutter, A.C. de and Morrison, W.D., 1986. The influence of nutrient density on performance of laying hens subjected to short term heat stress. Po. Sci. 65 (suppl. 1): 34 (abstract).

    Google Scholar 

  • Scott, T.A. and Balnave, D., 1986. The influence of dietary self-selection on performance of young pullets under hot and cold environmental temperatures. Po. Sci. 65 (suppl. 1): 122 (abstract).

    Google Scholar 

  • Stauch, R., 1979. Literaturübersicht über die Körpertemperaturen bei Vögeln. Thesis, Munchen, 170 pp.

    Google Scholar 

  • Taylor, C.R., Seeherman, H.J., Malory, G.M.O., Heglund, N.C. and Kamau, J.M.Z., 1978. Scaling maximum aerobic capacity (VO2max) to body size in mammals. Fed. Proc. 37: 473.

    Google Scholar 

  • Tzschentke, B and Nichelmann, M., 1986. The influence of wind speed on heat production in laying hybrids (Gallus domesticus) of different ages at various relative humidities. J. therm. Biol. 11 (2): 109–113.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Van Kampen, M. (1987). Climatic Conditions and Energy Metabolism of Laying Hens. In: Verstegen, M.W.A., Henken, A.M. (eds) Energy Metabolism in Farm Animals. Current Topics in Veterinary Medicine and Animal Science, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3363-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3363-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8010-1

  • Online ISBN: 978-94-009-3363-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics