Skip to main content

Mechanisms of Crack Propagation in Cortical Bone

  • Chapter
Biomechanics: Basic and Applied Research

Part of the book series: Developments in Biomechanics ((DEBI,volume 3))

  • 45 Accesses

Abstract

The anisotropic nature exhibited by compact bone has been well documented in the literature, with differences in mechanical behaviour measured between orientations parallel to (designated as longitudinal) or normal (designated as transverse) to the long axis of the bone (1–5). Several investigators have studied the influence of a variation in the direction of osteons in bone in relation to the associated tensile, compressive and torsional deformation properties (6–10). but only limited data has been previously reported on the fracture characteristics as evaluated by Kc (the critical stress intensity factor) (11) and Gc (the critical strain energy release rate) as a function of orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonfield, W. and Li, C. H., “Deformation and fracture of bone”, J. Appl. Phys., 37. pp. 869–875 (1966).

    Article  Google Scholar 

  2. Melvin, J.W. and Evans, F. G., ASME Biomaterials Symposium. Detroit. MI. (1973).

    Google Scholar 

  3. Margel-Robertson, D., Ph.D. Thesis. University of Stanford. CA (1973).

    Google Scholar 

  4. Bonfield, R. and Datta, P.K., “Fracture toughness of compact bone”. J. Biomechanics. 9. pp. 131–134. (1976).

    Article  Google Scholar 

  5. Bonfield, W. and Datta, P. K., “Impact fracture of compact bone in a shock tube”. J. Mater. Sci., 9. pp. 1609–1614. (1974).

    Article  Google Scholar 

  6. Hirsch, C. and Da Silva, O., “The effect of orientation on some mechanical properties of femoral cortical specimens” Acta. Orthop. Scand. 38(1) pp.45–56 (1967).

    Article  Google Scholar 

  7. Pope, M.H. and Outwater, J. O., “Mechanical properties of bone as a function of position and orientation” J. Biomech., 7, pp. 61–66 (1974).

    Article  Google Scholar 

  8. Bargren, J. H., Andres, C., Bassett, L., and Gjelsvik, A., “Mechanical properties of hydrated cortical bone” J. Biomech., 7, pp. 239–245 (1974).

    Article  Google Scholar 

  9. Reilly, D.T., and Burstein, A. H., “The elastic and ultimate properties of compact bone tissue”, J. Biomech. 8. pp. 393–405 (1975).

    Article  Google Scholar 

  10. Bonfield, W., and Grynpas, M. D., “Anisotropy of the Young’s modulus of bone”. Nature. 270, no. 5636 pp. 453–454 (1977).

    Article  Google Scholar 

  11. Bonfield, W., Behiri, J.C., and Charalambides, B., “Orientation and age-related dependence of the fracture toughness of cortical bone”. Fourth Meeting of the European Society of Biomechanics. Davos. Switzerland, 196 (1984).

    Google Scholar 

  12. Bonfield, W., Grynpas, M. D. and Young, R. J., “Crack velocity and the fracture of bone”. J. Biomech., 11, pp. 473–479. (1978).

    Article  Google Scholar 

  13. Behiri, J.C. and Bonfield, W., “Crack velocity dependence of longitudinal fracture in bone”. J. Mater. Sci., 15, pp. 1841–1849. (1980).

    Article  Google Scholar 

  14. Behiri, J.C. and Bonfield, W., “Fracture mechanics of cortical bone”. Biomechanics: Principles and Applications (Edited by Huiskes, Van Campen, D. and De Wijn, J.), pp. 247–251. Martinus Nijhoff, The Hague (1982).

    Chapter  Google Scholar 

  15. Behiri, J.C. and Bonfield, W., “Fracture mechanics of bone — the effects of density, specimen thickness and crack velocity on longitudinal fracture”. J. Biomech., 17. pp. 25–34. (1984).

    Article  Google Scholar 

  16. Wright, T. M. and Hayes, W.C., (1971) “Fracture mechanics parameters for compact bone — effects of density and specimen thickness” J. Biomechanics 10, 419–430 (1977).

    Google Scholar 

  17. Williams, D. D. and Evans, A. G., “A simple method for studying slow crack growth”. J. of Testing and Evaluation V. 1. p. 264 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Behiri, J.C., Bonfield, W., Charalambides, B. (1987). Mechanisms of Crack Propagation in Cortical Bone. In: Bergmann, G., Kölbel, R., Rohlmann, A. (eds) Biomechanics: Basic and Applied Research. Developments in Biomechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3355-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3355-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8007-1

  • Online ISBN: 978-94-009-3355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics