Advertisement

Neuropathology and Regional Imaging of Microcirculation, Tissue pH, Metabolites and Necroses in Cerebral RG2 and F98 Anaplastic Rat Glioma Transplantation Tumors

  • W. Wechsler
  • U. Teske
  • G. Reifenberger
  • M. Deckert
  • R. J. Seitz
  • G. Mies
  • W. Paschen
  • K.-A. Hossmann
Chapter
Part of the Developments in Oncology book series (DION, volume 52)

Abstract

Malignant human gliomas corresponding to grade III and IV are anaplastic ependymomas, anaplastic astrocytomas, anaplastic oligodendrogliomas, anaplastic mixed gliomas and the glioblastoma group (WHO classification, 43). These high-grade gliomas are characterized by an increased rate of cell proliferation and by special regressive changes, such as mucoid and fatty degeneration, cyst formation and in particular by tumor necrobiosis and/or necrosis (33, 46). Size and kind of necroses, however, vary with regard to tumor type and tumor grade. Whereas anaplastic gliomas contain by definition multiple and sometimes abundant necrotic foci, in glioblastomas microscopic necroses of the pseudo palisading type occur as well as macroscopically visible large areas of multicentric necroses.

Key words

RG2 and F98 rat glioma clones monolayer cultures spheroid cultures cerebral transplantation tumors neuropathology immunohistochemistry tumor vascularization microcirculation metabolism tissue pH tumor necroses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardenne Von (M.), Reitnauer (P.G.), Rhode (K.), Westmeyer (H.): In vivo pH-Messungen in Krebs-Mikrometastasen bei optimierter Übersauerung. Z. Naturforsch. 241: 1610–1619 (1969).Google Scholar
  2. 2.
    Bignami (A.), Raju (T.), Dahl (D.): Localization of vimentin, the non-specific intermediate filament protein, in embryonal glia and in early differentiating neurons. Developmental Biology 91: 286–295 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Beutler (B.), Greenwald (D.), Hulmes (J.D.), Chang (M.), Pan (Y-C.E.), Mathison (J.), Ulevitch (R.), Cerami (A.): Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316: 552–554 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    Blasberg (R.G.), Kobayashi (T.), Patlak (C.S.), Shinohara (M.), Miyoaka (M.), Rice (J.M.), Shapiro (W.R.): Regional blood flow, capillary permeability, and glucose utilization in two brain tumor models: prelimminary observations and pharmacokinetic implications. Cancer Treatment Reports 65: 3–12 (1981).PubMedGoogle Scholar
  5. 5.
    Calderwood (S.K.), Dickson (J.A.): Effect of hyperglycemia on blood flow, pH, and response to hyperthermia (41 C) of the Yoshida sarcoma in the rat. Cancer Res. 40: 4728–4733 (1980).PubMedGoogle Scholar
  6. 6.
    Carlsson (J.), Acker (H.), Nederman (T.), Glimelius (B.): Glioma spheroids: morphology growth and extra cellular matrix. GBK-Symposium 1985, Cancer Campaign, Gustav Fischer, Stuttgart, New York (1987 in press).Google Scholar
  7. 7.
    Carlsson (J.), Stalnacke (C.-G.), Acker (H.), Haji-Karim (M.), Nilsson (S.), Larsson (B.): The influence of oxygen on viability and proliferation in cellular spheroids. Int. J. Radiat. Oncol. Biol. Phys. 5: 2011–2020 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    Carlsson (J.), Nilsson (K.), Westermark (B.), Ponten (J.), Sundstrom (C.), Larsson (E.), Bergh (J.), Pahlman (S.), Busch (C.), Collins (V.P.): Formation and growth of multicellular spheroids of human origin. Int. J. Cancer 31: 523–533 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    Carswell (E.A.), Old (L.J.), Kassel (R.L.), Green (S.), Fiore (N.), Williamson (B.): An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Nat. Acad. Sci. USA 72: 3666–3670 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    Chalkley (H.W.), Cornfield (J.), Park (H.): A method for estimating volume-surface ratios. Science 110: 295–297 (1949).PubMedCrossRefGoogle Scholar
  11. 11.
    Csiba (L.), Paschen (W.), Hossmann (K.-A.): A topographic quantitative method for measuring brain tissue pH under physiological and patho-physiological condisions. Brain Res. 289: 334–337 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    Dahl (D.), Rueger (D.C.), Bignami (A.): Vimentin, the 57000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur. J. Cell Biol. 24: 191–196 (1981).PubMedGoogle Scholar
  13. 13.
    Franke (W.W.), Schmid (E.), Winter (S.), Osborn (M.), Weber (K.): Widespread occurence of intermediatesized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp. Cell Res. 123: 25–46 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    Groothuis (D.R.), Molnar (P.), Blasberg (R.G.): Regional blood flow and blood-to-tissue transport in five brain tumor models. Implications for chemotherapy. Prog. Exp. Tumor Res. 27: 132–153 (1984).PubMedGoogle Scholar
  15. 15.
    Hilmas (D.E.), Gilette (E.L.): Morphometric analyses of the microvasculature of tumors during growth and after X-irradiation. Cancer 33: 103–110 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    Hossmann (K.-A.), Niebuhr (I.), Tamura (M.): Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J. Cereb. Blood Flow Metab. 2: 25–32 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    Hossmann (K.-A.), Mies (G.), Paschen (W.), Szabo (L.), Dolan (E.), Wechsler (W.): Regional metabolism of experimental brain tumors. Acta Neuropath. (Berl.) 69: 139–147 (1986).CrossRefGoogle Scholar
  18. 18.
    Kirsch (W.M.), Schulz (D.), Leitner (J.W.): The effect of prolonged ischemia upon regional energy reserves in the experimental glioblastoma. Cancer Res. 27: 2212–2220 (1967).PubMedGoogle Scholar
  19. 19.
    Jahde (E.), Rajewsky (M.K.), Baumgartl (H.): pH distributions in transplanted neural tumors and normal tissues of BDIX rats as measured with pH microelectrodes. Cancer Res. 42: 1498–1504 (1982).PubMedGoogle Scholar
  20. 20.
    Junck (L.), Blasberg (R.), Rottenberg (D.A.): Brain and tumor pH in experimental leptomeningeal carcinomatosis. Trans. Am. Neurol. Assoc. 106: 298–301 (1981).Google Scholar
  21. 21.
    Ko (L.), Koestner (A.): Morphologic and morphometric analyses of butyrate-induced alterations of rat glioma cells in vitro. J. Natl. Canc. Inst. 65: 1017–1027 (1980).Google Scholar
  22. 22.
    Ko (L.), Koestner (A.), Wechsler (W.): Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol. (Berl.) 51: 23–31 (1980).CrossRefGoogle Scholar
  23. 23.
    Kobatake (K.), Sako (K.), Izawa (M.), Yamamoto (Y.L.), Hakim (A.M.): Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15: 540–547 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    Li (C.K.N.): The glucose distribution in 9L rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer 50: 2066–2073 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    Li (C.K.N.): The role of glucose in the growth of 9L multicell tumor spheroids. Cancer 50: 2074–2078 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    Müller-Klieser (W.): Limitierende Faktoren für die Versorgung von Tumorgeweben. Akademie der Wissenschaften und der Literatur. Funktions-analyse Biologischer Systeme 13, Franz Steiner Verlag Wiesbaden GmbH Stuttgart (1985).Google Scholar
  27. 27.
    Mies (G.), Paschen (W.), Csiba (L.), Krajewski (S.), Wechsler (W.), Hossmann (K.-A.): Comparison of regional tissue pH measured with the umbelliferone and 14C-DMO technique in rat brain. J. Cereb. Blood Flow Metab. 5: 247–248 (1985).Google Scholar
  28. 28.
    Pennica (D.), Nedwin (G.E.), Hayflick (J.S.), Seeburg (P.H.), Derynck (R.), Palladino (M.A.), Kohr (W.J.), Aggarwal (B.B.), Goeddel (D.V.): Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    Pixley (S.K.R.), De Vellis (J.): Transition between immature radia glia and mature astrocytes studied with a monoclonal antibody to vimentin. Developmental Brain Res. 15: 201–209 (1984).CrossRefGoogle Scholar
  30. 30.
    Quinlan (R.A.), Franke (W.W.): Molecular interactions in intermediate-sized filaments revealed by chemical cross-linking. Eur. J. Biochem. 132: 477–484 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    Rhodes (C.G.), Wise (R.J.S.), Gibbs (J.M.), Frackowiak (R.S.J.), Hatazawa (J.), Palmer (A.J.) Thomas (D.G.T.), Jones (T.): In vivo disturbance of oxidative metabolism of glucose in human cerebral gliomas. Ann. Neurol. 14: 614–626 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    Rottenberg (D.A.), Ginos (J.Z.), Kearfott (K.T.), Junck (L.), Bigner (D.D.): In vivo measurement of regional brain tissue pH using positron emission tomography. Ann. Neurol. 15: 98–102 (1984).CrossRefGoogle Scholar
  33. 33.
    Rubinstein (L.J.): Tumors of the central nervous system. Armed Forces Institute of Pathology, Washington (1972).Google Scholar
  34. 34.
    Saggu (H.), Pilkington (G.J.): Immunocytochemical characterization of theA15 A5 transplantable brain tumour model in vivo. Neuropath, and Applied Neurobiol. 12: 291–303 (1986).CrossRefGoogle Scholar
  35. 35.
    Sauer (L.A.), Stayman III (J.W.), Dauchy (R.T.): Amino acids, glucose, and lactic acid utilization in vivo by rat tumors. Canc. Res. 42: 4090–4097 (1982).Google Scholar
  36. 36.
    Seitz (R.J.), Wechsler (W.): Vascularization of human cerebral gliomas: a lectin-cytochemical and morphometric study. Biol. of Brain Tumour, 131–137, eds. M.D. Walker and D.G.T. Thomas, M. Nijhoff. Publ., Boston (1986).CrossRefGoogle Scholar
  37. 37.
    Seitz (R.J.), Wechsler (W.): Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropath. (Berl.) (1987), in press.Google Scholar
  38. 38.
    Sharp (G.), Osborn (M.), Weber (K.): Occurrence of two different intermediate filament proteins in the same filament in situ within a human glioma cell line. Exp. Cell Res. 141: 385–395 (1982).PubMedCrossRefGoogle Scholar
  39. 39.
    Shirai (T.), Yamaguchi (H.), Ito (H.), Todd (C.W.), Wallace (R.B.): Cloning and expression in Escherichia coli of the gene for human tumour necrosis factor. Nature 313: 803–806 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    Teske (U.P.): Wachstum und Tumorvaskularisation des maglignen Rattengliomklones RG2 nach syngener intrazerebraler Implantation. Dissert. Neuropath. Inst. der Univ. Düsseldorf (1986).Google Scholar
  41. 41.
    Vaupel (P.): Atemgaswechsel und Glucosestoffwechsel von Implantations-tumoren (DS-Carcinosarkom) in vivo. Akademie der Wissenschaften und der Literatur. Funktionsanalyse Biologischer Systeme 1, Franz Steiner Verlag Wiesbaden GmbH (1974).Google Scholar
  42. 42.
    Vaupel (P.), Hammersen (F.): Mikrozirkulation in malignen Tumoren. In: Mikrozirkulation in Forschung und Klinik, Vol. 2. Karger, Basel etc. (1982).Google Scholar
  43. 43.
    WHO: International histological classification of tumours. N° 21: Histological typing of tumours of the central nervous system, ed. K.J. Zülch (1979).Google Scholar
  44. 44.
    Wang (E.), Cairncross (J.G.), Liem (R.K.H.): Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells. Proc. Natl. Acad. Sci. USA 81: 2102–2106 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    Warburg (O.): Über den Stoffwechsel der Tumoren. Springer, Berlin (1926).Google Scholar
  46. 46.
    Zülch (K.J.): Brain tumors. Springer, Berlin, Heidelberg, New York, Tokyo (1986).Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • W. Wechsler
    • 1
  • U. Teske
    • 1
  • G. Reifenberger
    • 1
  • M. Deckert
    • 1
  • R. J. Seitz
    • 2
  • G. Mies
    • 3
  • W. Paschen
    • 3
  • K.-A. Hossmann
    • 3
  1. 1.Department of NeuropathologyGermany
  2. 2.Department of NeurologyUniversity of DüsseldorfGermany
  3. 3.Department of Experimental NeurologyMax-Planck-Institut für Neurologische ForschungCologneGermany

Personalised recommendations