Levels of Polyamine Biosynthetic Decarboxylase Activities as Indicators of the Degree of Malignancy of Human Primary Central Nervous System Tumors

  • G. Luccarelli
  • M. E. Ferioli
  • G. Broggi
  • G. Scalabrino
Part of the Developments in Oncology book series (DION, volume 52)


The polyamines, putrescine, spermidine and spermine, which are ubiquitous organic cations of low molecular weight in all living organisms, are distributed in the different areas of mammalian central nervous system (CNS) (1–8). The levels of polyamines vary markedly between brain regions (9, 10). Areas with considerable white matter contain higher levels of spermidine, although this correlation with white matter is by no means perfect (10–12). These polyamines are known to be synthesized in human nervous tissues, because the presence of the four enzymes of the biosynthesis pathway of polyamines, i.e., L-ornithine decarboxylase (EC (ODC), S-adenosyl-Lmethionine decarboxylase (EC (AMD), spermidine synthase (EC and spermine synthase (EC 2.5.1.—) in mammalian CNS in now well documented (9,13,14). These polyamines can diffuse from human nervous tissues into cerebrospinal fluid (CSF) (15). It has been demonstrated that interconversion of polyamines can also take place in mammalian CNS (8, 16, 17). Although the physiological function of these amines is still not well understood at the molecular level, an abundant literature suggests that the concentrations of polyamines inside the eukaryotic cells are highly regulated and that polyamines play essential roles in cellular growth (whether normal or neoplastic) and differentiation (for review see 18, 19).

Key words

Polyamines Brain Tumors Gliomas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kremzner (L.T.): Metabolism of polyamines in the nervous system. Fed. Proc., 29: 1583–1588 (1970).PubMedGoogle Scholar
  2. 2.
    Russell (D.H.), Medina (V.J.), Snyder (S.H.): The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain. J. Biol. Chem., 245: 6732–6738 (1970).PubMedGoogle Scholar
  3. 3.
    Shaskan (E.G.), Snyder (S.H.): Polyamine turnover in different regions of rat brain. J. Neurochem., 20: 1453–1460 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    Shaw (G.G.), Pateman (A.J.): The regional distribution of the polyamines spermidine and spermine in brain. J. Neurochem., 20: 1225–1230 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    Harik (S.I.), Snyder (S.H.): Putrescine: regional distribution in the nervous system of the rat and the cat. Brain Res., 66: 328–331 (1974).CrossRefGoogle Scholar
  6. 6.
    Seiler (N.), Lamberty (U.): Interrelations between polyamines and nucleic acids: changes of polyamine and nucleic acid concentrations in the developing rat brain. J. Neurochem., 24: 5–13 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    Seiler (N.), Schmidt-Glenewinkel (T.): Regional distribution of putrescine, spermidine and spermine in relation to the distribution of RNA and DNA in the rat nervous system. J. Neurochem., 24: 791–795 (1975).PubMedGoogle Scholar
  8. 8.
    Halliday (C.A.), Shaw (G.C.): The distribution and metabolism of putrescine, spermidine and spermine injected into the cerebral ventricles of rabbits. J. Neurochem., 26: 1199–1205 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    Kremzner (L.T.), Barrett (R.E.), Terrano (M.J.): Polyamine metabolism in the central and peripheral nervous system. Ann. N.Y. Acad. Sci., 171: 735–748 (1970).CrossRefGoogle Scholar
  10. 10.
    Snyder (S.H.) Shaskan (E.G.), Marik (S.I.): Polyamine disposition in the central nervous system. In: Polyamines in Normal and Neoplastic Growth. Ed. D.H. Russell, Raven Press, New York, pp. 199–213 (1973).Google Scholar
  11. 11.
    Shimizu (H.), Kakimoto (Y.), Sano (I.): The determination and distribution of polyamines in mammalian nervous system. J. Pharmac. Exp. Ther., 143: 199–204 (1974).Google Scholar
  12. 12.
    Kremzner (L.T.): Polyamine metabolism in normal and neoplastic neural tissue. In : Polyamines in Normal and Neoplastic Growth. Ed. D.H. Russell, Raven Press, New York, pp. 27–40 (1973).Google Scholar
  13. 13.
    Shaskan (E.G.), Haraszti (J.H.), Snyder (S.H.): Polyamines: developmental alterations in regional disposition and metabolism in rat brain. J. Neurochem., 20: 1443–1452 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    Raina (A.), Pajula (R.L.), Eloranta (T.): A rapid assay method for spermidine and spermine synthases. Distribution of polyamine-synthesizing enzymes and methionine adenosyltransferase in rat tissues. FEBS Lett., 67: 252–255 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    Shaw (G.G.): The polyamines in the central nervous system. Biochem. Pharmacol., 28: 1–6 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Sturman (J.A.), Ingoglia (N.A.), Lindquist (T.D.): Interconversion of putrescine, spermidine and spermine in goldfish and rat retina. Life Sci., 19: 719–724 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    Seiler (N.), Bolkenius (F.N.): Polyamine reutilization and turnover in brain. Neurochem. Res., 10: 529–544 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Scalabrino (G.), Ferioli (M.E.): Polyamines in mammalian tumors. Part I. Adv. Cancer Res., 35: 151–268 (1981).CrossRefGoogle Scholar
  19. 19.
    Scalabrino (G.), Ferioli (M.E.): Polyamines in mammalian tumors. Part II. Adv. Cancer Res., 36: 1–102 (1982).CrossRefGoogle Scholar
  20. 20.
    Seidenfeld (J.), Marton (L.J.): Biochemical markers of central nervous system tumors measured in cerebrospinal fluid and their potential use in diagnosis and patient management: a review. J. Natl. Cancer Inst., 63: 919–931 (1979).PubMedGoogle Scholar
  21. 21.
    Tribolet (N. de), Carrel (S.): Human glioma tumour-associated antigens. Cancer Immunol. Immunother., 9: 207–211 (1980).CrossRefGoogle Scholar
  22. 22.
    Wickstrand (C.J.), Bigner (D.D.): Immunobiologic aspects of the brain and human gliomas. Am. J. Pathol., 98: 515–567 (1980).Google Scholar
  23. 23.
    Marton (L.J.): Polyamines and brain tumors. Natl. Cancer Inst. Monogr., 46: 127–131 (1977).PubMedGoogle Scholar
  24. 24.
    Marton (L.J.): Polyamines and brain tumors: relationship to patient monitoring and therapy; Adv. Polyamine Res., 3: 425–430 (1981).Google Scholar
  25. 25.
    Marton (L.J.): CSF polyamines. Potential as brain tumor markers. Arch. Neurol., 38: 73–74 (1981).PubMedGoogle Scholar
  26. 26.
    Marton (L.J.), Heby (O.), Levin (V.A.), Lubich (W.P.), Crafts (D.C.), Wilson (C.B.): The relationship of polyamines in cerebrospinal fluid to the presence of central nervous system tumors. Cancer Res., 36: 973–977 (1976).PubMedGoogle Scholar
  27. 27.
    Marton (L.J.), Edwards (M.S.), Levin (V.A.), Lubich (W.P.), Wilson (C.B.): Predictive value of cerebrospinal fluid polyamines in medulloblastoma. Cancer Res., 39: 993–997 (1979).PubMedGoogle Scholar
  28. 28.
    Marton (L.J.), Edwards (M.S.), Levin (V.A.), Lubich (W.P.), Wilson (C.B.): CSF polyamines: a new and important means of monitoring patients with medulloblastoma. Cancer, 47: 757–760 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    Fulton (D.S.), Levin (V.A.), Lubich (W.P.), Wilson (C.B.), Marton (L.J.): Cerebrospinal fluid polyamines in patients with glioblastoma multiforme and anaplastic astrocytoma. Cancer Res., 40: 3293–3296 (1980).PubMedGoogle Scholar
  30. 30.
    Fulton (D.S.), Marton (L.J.), Lubich (W.P.), Wilson (C.B.): Polyamine levels in CSF from patients with pituitary tumors or nonneoplastic pituitary disease. Arch. Neurol., 39: 47–48 (1982).PubMedGoogle Scholar
  31. 31.
    Pierangeli (E.), Levin (V.A.), Seidenfeld (J.), Marton (L.J.): Putrescine diffusion in cat brain and capillary permeability in rat brain: relation to CSF putrescine levels in brain tumor patients. Eur. J. Cancer, 17: 143–147 (1981).CrossRefGoogle Scholar
  32. 32.
    Harik (S.I.), Sutton (C.H.): Putrescine as a biochemical marker of malignant brain tumors. Cancer Res., 39: 5010–5015 (1979).PubMedGoogle Scholar
  33. 33.
    Scalabrino (G.), Modena (D.), Ferioli (M.E.), Puerari (M.), Luccarelli (G.): Degrees of malignancy in human primary central nervous system tumors: ornithine decarboxylase levels as better indicators than adenosylmethionine decarboxylase levels. J. Natl. Cancer Inst., 68: 751–754 (1982).PubMedGoogle Scholar
  34. 34.
    Williams-Ashman (H.G.), Coppoc (G.L.), Weber (G.): Imbalance in ornithine metabolism in hepatomas of different growth rates as expressed in formation of putrescine, spermidine and spermine. Cancer Res., 32: 1924–1932 (1972).PubMedGoogle Scholar
  35. 35.
    O’Brin (T.G.): The induction of ornithine decarboxylase as early, possibly obligatory, event in mouse skin cancerogenesis. Cancer Res., 36: 2644–2653 (1976).Google Scholar
  36. 36.
    Boutwell (R.K.), O’Brien (T.G.), Verma (A.K.), Weekes (R.G.), Young (L.M. de), Ashendel (C.L.), Astrup (E.G.): The induction of ornithine decarboxylase activity and its control in mouse skin epidermis. Adv. Enzyme Regul., 17: 89–112 (1979).CrossRefGoogle Scholar
  37. 37.
    Scalabrino (G.), Pigatto (P.), Ferioli (M.E.), Modena (D.), Puerari (M.), Caru (A.): Levels of activity of the polyamine biosynthetic decarboylases as indicators of degree of malignancy of human cutaneous epitheliomas. J. Invest. Dermatol., 74: 122–124 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    Stell (G.G.): Growth kinetics of brain tumours. In: Brain Tumors. Eds. D.G.T. Thomas, D.I. Graham, Butterworths, London, pp. 10–20 (1980).Google Scholar
  39. 39.
    Rubinstein (L.J.): Tumors of the central nervous system. In: Atlas of Tumor Pathology, 2nd Series, Fascicle 6. Armed Forces Inst. of Pathology, Washington D.C., pp. 169–190 (1972).Google Scholar
  40. 40.
    Crompton (M.R.), Gautier-Smith (P.C.): The prediction of recurrence in meningiomas. J. Neurol. Neurosurg. Psychiat., 33: 80–87 (1970).PubMedCrossRefGoogle Scholar
  41. 41.
    Anderson (T.R.), Schanberg (S.M.): Ornithine decarboxylase activity in developing rat brain. J. Neurochem., 19: 1471–1481 (1972).PubMedCrossRefGoogle Scholar
  42. 42.
    Schmidt (G.L.), Cantoni (G.L.): Adenosylmethionine decarboxylase in developing rat brain. J. Neurochem., 20: 1373–1385 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    Sturman (J.A.), Gaull (G.E.): Polyamine biosynthesis in human fetal liver and brain. Pediat. Res., 8: 231–237 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    Gilad (G.M.), Kopin (I.J.): Neurochemical aspects of neuronal ontogenesis in the developing rat cerebellum: changes in neurotransmitter and polyamine synthesizing enzymes. J. Neurochem., 33: 1195–1204 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    Slotkin (T.A.): Ornithine decarboxylase as a tool in developmental neurobiology. Life Sci., 24: 1623–1630 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    Laitinen (S.I.), Laitinen (P.H.), Hietala (O.A.), Pajunen (A.E.I.), Piha (R.S.): Developmental changes in mouse brain polyamine metabolism. Neurochem. Res., 7: 1477–1485 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    Ruel (J.), Chénard (C.), Coulombe (P.), Dussault (J.H.): Thyroid hormones modulate ornithine decarboxylase in the immature rat cerebellum. Can. J. Physiol. Pharmacol., 62: 1279–1283 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    Anderson (T.R.), Schanberg (S.M.): Effect of tyroxine and cortisol on brain ornithine decarboxylase activity and swimming behavior in developing rat. Biochem. Pharmacol., 24: 495–501 (1975).PubMedCrossRefGoogle Scholar
  49. 49.
    Grillo (M.A.), Fossa (T.), Dianzani (U.): Arginase, ornithine decarboxylase and S-adenosylmethionine decarboxylase in chicken brain and retina. Int. J. Biochem., 15: 1081–1084 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • G. Luccarelli
    • 1
  • M. E. Ferioli
    • 2
  • G. Broggi
    • 1
  • G. Scalabrino
    • 2
  1. 1.Neurological Institute “C. Besta”University of MilanoMilanoItaly
  2. 2.Institute of General Pathology and C.N.R. Centre for Research in Cell PathologyUniversity of MilanoMilanoItaly

Personalised recommendations