Advertisement

Oncogenes, Growth Factors and the Pathogenesis of Human Glioma: The 1986 Engelhardt Lecture

  • B. Westermark
  • M. Nistér
  • C. H. Heldin
Chapter
  • 37 Downloads
Part of the Developments in Oncology book series (DION, volume 52)

Abstract

Cancer is generally believed to evolve through a multihit mechanism involving several genetic lesions. Those genes, whose expression convert cells to a neoplastic phenotype, are collectively called oncogenes. In recent years, it has become evident that the oncogenes do not constitute a novel genetic material in the transformed cell but represent altered versions of normal cellular genes (proto-oncogenes). The latter can be activated to transforming oncogenes through specific genetic mechanisms, summarized in fig. 1.

Key words

Oncogenes Growth factors Glioma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Betsholtz (C.), Johnsson (A.), Heldin (C.H.) and Westermark (B.): Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor induced mitogenesis by suramin. Proc. Natl. Acad. Sci. USA 83: 6440–6444 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    Bigner (S.H.), Mark (J.), Mahaley (S.) and Bigner (D.D.): Patterns of the early, gross chromosomal changes in human glioma. Hereditas 101: 103–113 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop (J.M.): Cellular oncogenes and retroviruses. Ann. Rev. Biochem. 52: 301–354 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    Deinhardt (F.): The biology of primate retroviruses. In Viral Oncology, G. Klein, ed. Raven Press New York, pp. 359–398 (1980).Google Scholar
  5. 5.
    Doolittle (R.F.), Hunkapiller (M.W.), Hood (L.E.), Devare (S.G.), Robbins (K.C.), Aaronson (S.A.) and Antoniades (H.N.): Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–277 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    Downward (J.), Yarden (Y.), Mayes (E.), Scrace (G.), Totty (N.), Stockwell (P.), Ullrich (A.), Schlessinger (J.) and Waterfield (M.D.): Close similarity of epidermal growth factor receptor and v-erb B protein sequences. Nature 307: 521–527 (1984a).PubMedCrossRefGoogle Scholar
  7. 7.
    Downward (J.), Parker (P.) and Waterfield (M.D.): Autophosphorylation sites on the epidermal growth factor receptor. Nature 311: 483–485 (1984b).PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman (J.): How is blood vessel growth regulated in normal and neoplastic tissue? Clowes memorial award lecture. Cancer Res. 46: 467–473 (1986).PubMedGoogle Scholar
  9. 9.
    Greenberg (M.E.) and Ziff (E.B.): Stimulation of 3T3 cells induces transcription of the c-fos gene. Nature 312: 433–438 (1984).CrossRefGoogle Scholar
  10. 10.
    Heldin (C.H.) and Westermark (B.): Growth factors: mechanism of action and relation to oncogenes. Cell 37: 9–20 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    Heldin (C.H.), Betsholtz (C.), Claesson-welsh (L.) and Westermark (B.): Subversion of growth regulatory pathways in malignant transformation. Biochem. Biophys. Acta, in press.Google Scholar
  12. 12.
    Hunter (T.) and Cooper (J.A.): Protein-tyrosine kinases. Annu. Rev. Biochem. 54: 897–930 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    Johnsson (A.), Heldin (C.H.) Wasteson (A.), Westermark (B.), Deuel (T.F.), Huang (J.S.) Seeburg (P.H.) Gray (E.), Ullrich (A.), Scrace (G.), Stroobant (P.) and Waterfield (M.D.): The c-sis gene encodes a precursor of the B chain of platelet-derived growth factor. EMBO J. 3: 921–928 (1984).PubMedGoogle Scholar
  14. 14.
    Johnsson (A.), Betsholtz (C.), Heldin (C.H.) and Westermark (B.): Antibodies against platelet-derived growth factor inhibit acute transformation by simian sarcoma virus. Nature 317: 438–440 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    Johnsson (A.), Betsholtz (C.), Heldin (C.H.) and Westermark (B.): The phenotypic characteristics of simian sarcoma virus-transformed human fibroblasts suggest that the v-sis gene product acts solely as a PDGF receptor agonist in cell transformation. EMBO J. 5: 1535–1541 (1986).PubMedGoogle Scholar
  16. 16.
    Josephs (S.F.), Guo (C.), Ratner (L.) and Wong-Staal (F.): Human protooncogene nucleotide sequences corresponding to the transforming region of simian sarcoma virus. Science 223: 487–490 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly (K.), Cochran (B.H.), Stiles (C.D.) and Leder (P.): Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35: 603–610 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    Libermann (T.A.), Nusbaum (H.R.), Razon (N.), Kris (R.), Lax (I.), Soreq (H.), Whittle (N.), Waterfield (M.D.), Ullrich (A.) and Schlessinger (J.): Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin. Nature 313: 144–147 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    Libermann (T.A.), Fiesel (R.), Jaye (M.), Lyall (R.M.), Westermark (B.), Drohan (W.), Schmidt (A.), Maciag (T.) and Schlessinger (J.): An angiogenetic factor is expressed in human glioma cells. Submitted (1987).Google Scholar
  20. 20.
    Marquardt (H.), Hunkapiller (M.W.), Hood (L.E.), Twardzik (D.R.), De Larco (J.E.), Stephenson (J.R.) and Todaro (G.J.): Transforming growth factors produced by retrovirus-transformed rodent fibroblasts and human melanoma cells: amino acid sequence homology with epidermal growth factor. Proc. Natl. Acad. Sci. USA 80: 4684–4688 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    Nistér (M.), Heldin (C.H.), Wasteson (A), and Westermark (B.): A glioma-derived analog to platelet-derived growth factor: demonstration of receptor-competing activity and immunological crossreactivity. Proc. Natl. Acad. Sci. USA 81: 926–930 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    Nistér (M.), Heldin (C.H.) and Westermark (B.): Clonal variation in the production of a platelet-derived growth faðtor-like protein and expression of corresponding receptors in a human malignant glioma. Cancer Res. 46: 332–340 (1986).PubMedGoogle Scholar
  23. 23.
    Nistér (M.), Wedell (B.), Betsholtz (C.), Heldin (C.H.), Westermark (B.) and Mark (J.): Evidence for progressional changes in the human malignant glioma line U-343 MGa: Analysis of karyotype and expression of the genes encoding the subunit chains of platelet-derived growth factor. Cancer Res. in press (1987).Google Scholar
  24. 24.
    Rosenthal (A.), Lindquist (P.B.), Bringman (T.S.), Goeddel (D.V.) and Derynck (R.): Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 46: 301–309 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    Schimke (R.T.): Gene amplification in cultured animal cells. Cell 37: 705–713 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    Schwab (M.), Alitalo (K.), Klempnauer (K.H.), Varmus (H.E.), Bishop (J.M.), Gilbert (F.), Goldstein (M.) and Trent (J.): Amplified DNA with limited homology to myc cellular sequences is shared by human neuroblastoma cell lines and a neuroblastoma tumor. Nature 305: 345–348 (1983).CrossRefGoogle Scholar
  27. 27.
    Sherr (C.J.), Rettenmier (C.W.), Sacca (R.), Roussel (M.F.), Look (A.T.) and Stanley (E.R.): The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41: 665–676 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    Trent (J.), Meltzer (P.), Rosenblum (M.), Harsh (G.), Kinzler (K.), Mashal (R.), Feinberg (A.) and Vogelstein (B.): Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma. Proc. Natl. Acad. Sci. USA 83: 470–473 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    Waterfield (M.D.), Scrace (G.T.), Whittle (N.), Stroobant (P.), Johnsson (A.), Wasteson (A.), Westermark (B.), Heldin (C.H.), Huang (J.S.) and Deuel (T.F.): Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304: 35–39 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    Westermark (B.), Ponten (J.) and Hugosson (R.): Determinants for the estabhishment for permanent tissue culture lines from human gliomas. Acta Path. Microbiol. Scand. section A. 81: 791–805 (1973).Google Scholar
  31. 31.
    Westermark (B.), Nistér (M.) and Heldin (C.H.): Growth factors and oncogenes in human malignant glioma. Neurologic clinics 3: 785–799 (1985).PubMedGoogle Scholar
  32. 32.
    Westermark (B.), Magnusson (A.) and Heldin (C.H.): Effect of epidermal growth factor on membrane motility and cell locomotion in cultures of human clonal glioma cells. J. Neurosci. Res. 8: 491–507 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    Williams (L.T.), Tremble (P.M.), Lavin (M.F.) and Sunday (M.E.): Platelet-derived growth factor receptors form a high affinity state in membrane preparations. J. Biol. Chem. 259: 5287–5294 (1984).PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • B. Westermark
  • M. Nistér
  • C. H. Heldin

There are no affiliations available

Personalised recommendations