Skip to main content

Cellular mechanisms of ventricular arrhythmias in ischemia

  • Chapter
Ventricular Tachycardias

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 71))

  • 52 Accesses

Abstract

The elucidation of the cellular mechanisms of ventricular arrhythmias in ischemia and infarction has been impeded by the inability to monitor readily intracellular potentials in ischemically-injured myocardium in situ. Various approaches to the problem, including recording of intracellular potentials from subepicardial cells in the beating heart with floating micro-electrodes, study of excised ischemically-injured myocardium, and study of excised normal tissues exposed to simulated ischemic conditions, all have limitations and the liability of generation of misleading data and wrong conclusions. Nevertheless, intriguring and perhaps relevant and significant observations have been made of the electrophysiological properties of cells altered by ischemia. Reviews in recent years have surveyed the burgeoning literature dealing with the cellular electrophysiological alteration due to ischemia [1, 2]. In this brief review, certain findings that appear at this time to be important in generation of arrhythmias will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lazzara R, Scherlag BJ. 1984. Cellular electrophysiology and ischemia. In: Sperelakis, N. ed. Physiology and pathophysiology of the heart. Boston: Martinus Nijhoff 443–458.

    Google Scholar 

  2. Singer DH, Baumgarten CM, Ten Eick RE. 1981. Cellular electrophysiology of ventricular and other dysrhythmias: Studies on diseased and ischemic heart. Prog Cardiovasc Dis 24: 97–156.

    Article  PubMed  CAS  Google Scholar 

  3. Mayer AG. 1908. Rhythmical pulsation in scyphomedusae: II. Carnegie Institute. Papers. Washington Tortugas Lab 1:113–131, Carnegie Institute Publication No. 102, part VII.

    Google Scholar 

  4. Mines GR. 1913. On dynamic equilibrium in the heart. J Physiol 46: 350–383.

    Google Scholar 

  5. Mines GR. 1914. On circulating excitations in heart muscles and their possible relation to tachycarida and fibrillation. Trans R Soc Can (ser 3, sect IV) 8: 43–52.

    Google Scholar 

  6. Garrey WE. 1914. The nature of fibrillary contraction of the heart. Its relation to tissue mass and form. Am J Physiol 33: 397–408.

    Google Scholar 

  7. Allessie MA, Bonke FIM, Schopman FJG. 1977. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The, leading circle, concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Cir Res 41: 9–18.

    CAS  Google Scholar 

  8. Wit AI, Allessie MA, Bonke FIM, et al. 1982. Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses: Experimen tal approach and initial results demonstrating reentrant excitation. Am J Cardiol 49:166–185.

    Article  PubMed  CAS  Google Scholar 

  9. El-Sherif N, Mehra R, Gough WB, et al. 1982. Ventricular activation pattern of spontaneous and induced ventricular rhythms in canine one-day-old myocardial infarction. Evidence for focal and reentrant mechanisms. Circ Res 51: 152–166.

    PubMed  CAS  Google Scholar 

  10. Josephson M, Buxton A, Marchlinski F, et al. 1985. Sustained ventricular tachycardia in coronary artery disease — Evidence for reetrant mechanism. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. New York: Grune and Stratton, Inc. pp 409–418.

    Google Scholar 

  11. Wit AL, Bigger JT. 1975. Possible electrophysiological mechanisms for lethal arrhythmias accompanying myocardial ischemia and infarction. Circulation 51 (suppl 3): 96–115.

    Google Scholar 

  12. Cranefield PF. 1975. The conduction of the cardiac impulse, Mount Kisco, New York, Futura.

    Google Scholar 

  13. Zipes DP, Besch HR, Watanabe AM. 1975. Role of the slow current in cardiac electrophysiology. Circulation 51: 761.

    PubMed  CAS  Google Scholar 

  14. Spear JF, Horowitz LN, Hodess AB, et al. 1979. Cellular electrophysiology of human myocardial infarction 1. Abnormalities of cellular activation. Circulation 59: 247.

    PubMed  CAS  Google Scholar 

  15. Lazzara R, Scherlag BJ. 1980. The role of the slow current in the generation of arrhythmias in ischemic myocardum. In: Zipes DP, Bailey JC, Elharrar V (eds) The slow inward current and cardiac arrhythmias. The Hague: Martinus Nijhoff, pp 399–416.

    Google Scholar 

  16. Moore DJ. 1938. Potassium changes in the functioning heart under conditions of ischemia and congestion. Am J Physiol 123: 443–447.

    Google Scholar 

  17. Hill JL, Gettes LS. 1980. Effect of acute coronary artery occlusion on local myocardial extracellu lar K+ activity in swine. Circulation 61: 768–778.

    PubMed  CAS  Google Scholar 

  18. Clusin WT, Buchbinder M, Ellis AK, et al. 1984. Reduction of ischemic depolarization by the calcium channel blocker diltiazem: Correlation with improvement of ventricular conduction and early arrhythmias in the dog. Circ Res 54:10–20.

    PubMed  CAS  Google Scholar 

  19. Spear JF, Michelson EL, Moore EN. 1983. Reduced space constant in slowly conducting regions of chronically infarcted canine myocardium. Circ Res 53: 176.

    PubMed  CAS  Google Scholar 

  20. Gardner PI, Ursell PC, Fenoglio JJ Jr., Wit AL. 1985. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72: 596–611.

    Article  PubMed  CAS  Google Scholar 

  21. De Mello WC. 1982. Cell-to-cell communication in heart and other tissues. Prog Biophys Mol Biol 39:147–182.

    Article  PubMed  Google Scholar 

  22. Spach MS, Miller WT III, Geselowìtz DB, et al. 1981. The discontinuous nature of propagation in normal canine cardiac muscle. Circ Res 48: 39.

    PubMed  CAS  Google Scholar 

  23. Spach MS, Kootsey JM. 1983. The nature of electrical propagation in cardiac muscle. Am J Physiol 244: H3.

    PubMed  CAS  Google Scholar 

  24. Kardesch M, Hogancamp CE, Bing RJ. 1958. Effect of complete ischemia on the intracellular electrical activity of the whole mammaliam heart. Circ Res 6: 714–725.

    Google Scholar 

  25. Samson WE, Scher AM. 1960. Mechanism of S-T segment alteration during acute mycardial injury. Circ Res 3: 780–787.

    Google Scholar 

  26. Lazzara R, El-Sherif N, Scherlag BJ. 1973. Early and late effects of coronary artery occlusion on canine Purkinje fibers. Circ Res 33: 597–611.

    Google Scholar 

  27. Downar E, Janse MJ, Durrer D. 1977. The effect of acute coronary artery occlusion on suben docardial transmembrane potentials in the intact porcine heart. Circulation 56: 217–224.

    PubMed  CAS  Google Scholar 

  28. Kleber AG, Janse MJ, Van Capelle JJL, Durrer D. 1978. Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular recordings. Circ Res 42: 603–613.

    PubMed  CAS  Google Scholar 

  29. Friedman PL, Stewart JR, Fenoglio JJ Jr, Wit AL. 1973. Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs: in vitro and in vivo correlation. Circ Res 33: 597–611.

    PubMed  CAS  Google Scholar 

  30. Lazzara R, El-Sherif N, Scherlag BJ. 1973. Electrophysiological properties of Purkinje cells in one-day-old myocardial infarction. Circ Res 33: 722–734.

    PubMed  CAS  Google Scholar 

  31. Spear JF, Michelson EL, Moore EN. 1983. Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias. J Am Coll Cardiol 4: 1099.

    Article  Google Scholar 

  32. Lazzara R, El-Sherif, Scherlag BJ. 1975. Disorders of cellular electrophysiology produced by ischemia of the canine His Bundle. Circ Res 36:444–453.

    PubMed  CAS  Google Scholar 

  33. Antzelevitch C, Jalife J, Moe GK. 1980. Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation 61:182.

    PubMed  CAS  Google Scholar 

  34. Janse MJ, Van Capelle FJL, Morsink H, et al. 1980. Flow of, injury, current and pattern of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts: evidence for two different arrhythmogenic mechanisms. Circ Res 47: 151–165.

    PubMed  CAS  Google Scholar 

  35. Janse MJ, Kleber AG. 1981. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49:1069–1081.

    PubMed  CAS  Google Scholar 

  36. Rothfeld EL, Zucker IR, Parsonnet V and Alinsonorin CA. 1968. Idioventricular rhythm in acute myocardial infarction. Circulation 37: 203.

    Google Scholar 

  37. Allen JD, Brennan JF, Wit AL. 1978. Actions of lidocaine on transmembrane potentials of subendocardial Purkinje fibers surviving in infarcted canine hearts. Circ Res 43:470.

    PubMed  CAS  Google Scholar 

  38. Hope RR, Scherlag BJ, El-Sherif N, Lazzara R. 1976. Heirarchy of ventricular pacemakers. Circ Res 39: 883–888.

    PubMed  CAS  Google Scholar 

  39. Friedman PL, Fenoglio JJ, Wit AL. 1975. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction. Circ Res 36: 127–144.

    PubMed  CAS  Google Scholar 

  40. El-Sherif N, Gough WB, Zeiler RH, Mehra R. 1983. Triggered ventricular rhythms in 1-day-old myocardial infarction in the dog. Circ Res 52: 566–579.

    PubMed  CAS  Google Scholar 

  41. El-Sherif N, Mehra R, Gough WB, Zeiler RH. 1983. Reentrant vertrieular arrhythmias in the late myocardial infarction period. Circulation 68: 644–656.

    Article  PubMed  CAS  Google Scholar 

  42. Le Marec H, Dangman KH, Danilo P Jr., et al. 1985. An evaluation of automaticity and triggered activity in the canine heart one to four days after myocardial infarction. Circulation 71:1224–1236.

    Article  PubMed  Google Scholar 

  43. Myerburg RJ, Gelband H, Nilsson K, et al. 1977. Long-term electrophysiological abnormalities resulting from experimental myocardial infarction in cats. Circ Res 41: 73–84.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Lazzara, R. (1987). Cellular mechanisms of ventricular arrhythmias in ischemia. In: Aliot, E., Lazzara, R. (eds) Ventricular Tachycardias. Developments in Cardiovascular Medicine, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3323-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3323-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7992-1

  • Online ISBN: 978-94-009-3323-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics