Skip to main content

Structural component of vascular resistance in hypertension

  • Chapter
Arterial and Venous Systems in Essential Hypertension

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 63))

  • 55 Accesses

Abstract

All biologic tissues are able to adapt their design, though in their own characteristic way, whenever sustained changes of activity or/and load occur, a process often modified also by ‘trophic’ influences as by local and blood-borne humoral agents and nerve transmitters. For example, it is well known that the design of the skeletal muscle system, being basically genetically determined as expressed in ‘leptosomic’ or ‘mesomorphic’ constitutions, is considerably affected not only by the duration, frequency and intensity of imposed physical training but also by trophic influences, as shown by the effects of anabolic steroids when abused in modern athletics. It is also well known that relative inactivity soon leads to regression of muscle hypertrophy and, when severe, even to atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkow B (1983): ‘Structural autoregulation’ - the local adaptation of vascular beds to chronic changes in pressure. In Development of the vascular system. Ciba Foundation Symp. London: Pitman Books 100: 56–79.

    Google Scholar 

  2. Folkow B (1978): The Fourth Volhard Lecture. Cardiovascular structural adaptation; its role in the initiation and maintenance of primary hypertension. Clin Sci Mol Med 55: 3s-22s.

    Google Scholar 

  3. Folkow B (1982): Physiological aspects of primary hypertension. Physiol Rev 62: 347–504.

    PubMed  CAS  Google Scholar 

  4. Sivertsson R (1970): The hemodynamic importance of structural vascular changes in essential hypertension. Acta Physiol Scand, Suppl. 343: 1–56.

    CAS  Google Scholar 

  5. Folkow B, Hallbäck M, Lundgren Y, Weiss L (1970): Background of increased flow resistance and vascular reactivity in spontaneously hypertensive rats. Acta Physiol Scand 80: 93–106.

    Article  PubMed  CAS  Google Scholar 

  6. Folkow B, Hallbäck M, Jones JV, Sutter M (1977): Dependence on external calcium for the noradrenaline contractility of the resistance vessels in spontaneously hypertensive and renal hypertensive rats, as compared with normotensive controls. Acta Physiol Scand 101: 84–97.

    Article  PubMed  CAS  Google Scholar 

  7. Mirsky I (1979): Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In Handbook of Physiology, Chapter 14, section 2, vol 1: 497–531.

    Google Scholar 

  8. Friberg P, Folkow B, Nordlander M (1985): Structural adaptation of the rat left ventricle in response to changes in pressure and volume loads. Acta Physiol Scand 125: 67–79.

    Article  PubMed  CAS  Google Scholar 

  9. Friberg P, Folkow B, Nordlander M (1986): Cardiac dimensions in spontaneously hypertensive rats following different modes of blood pressure reduction by antihypertensive treatment. J Hypertension 4: 165–173.

    Article  CAS  Google Scholar 

  10. Myrhage R, Hudlicka O (1978): Capillary growth in chronically stimulated adult skeletal muscle. Microvasc Res 16: 73–90.

    Article  PubMed  CAS  Google Scholar 

  11. Göthberg G, Hallbäck-Nordlander M, Karlström G, Ricksten S-E, Folkow B (1983): Structurally based changes of renal vascular reactivity in spontaneously hypertensive and two-kidney, one-clip renal hypertensive rats, as compared with kidneys from uninephrectomized and intact normotensive rats. Acta Physiol Scand 118: 61–67.

    Article  PubMed  Google Scholar 

  12. Folkow B, Gurévich M, Hallback M, Lundgren Y, Weiss L (1971): The hemodynamic consequences of regional hypotension in spontaneously hypertensive and normotensive rats. Acta Physiol Scand 83: 532–541.

    Article  PubMed  CAS  Google Scholar 

  13. Folkow B, Nordlander M, Strauer B-E, Wikstrand J (eds) (1984): Pathophysiology and clinical implications of early structural changes. Hypertension 6, Suppl. III: III-1-III-187.

    Google Scholar 

  14. Weiss L (1978): Adaptive cardiovascular changes to physical training in spontaneously hypertensive and normotensive rats. Cardiovasc Res 12, no 6: 329–333.

    Article  PubMed  CAS  Google Scholar 

  15. Safar ME, Simon AC, Levenson JA (1984): Structural changes of large arteries in sustained essential hypertension. Hypertension 6, Suppl. III: III-117-III-121.

    CAS  Google Scholar 

  16. Kügelgen A von (1955): Uber das Verhältnis von Ringmuskulatur und Innendruck in menschlichen grossen Venen. Z Zellforsch Mitrosk Anat 43: 168–183.

    Article  Google Scholar 

  17. Tarazi RC (1982): The role of the heart in hypertension. Clin Sci 63, Suppl 8: 347s-358s.

    Google Scholar 

  18. Bevan RD (1984): Trophic effects of peripheral adrenergic nerves on vascular structure. Hypertension 6, Suppl. III: III-119–III-126.

    Google Scholar 

  19. Folkow B (1956): Structural, myogenic, humoral and nervous factors controlling peripheral resistance. In Hypotensive Drugs, edited by Harington M, London: Pergamon, pp 163–174.

    Google Scholar 

  20. Folkow B, Grimby G, Thulesius O (1958): Adaptive stuctural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand 44: 255–272.

    Article  PubMed  CAS  Google Scholar 

  21. Aalkjaer C, Danielsen H, Johannesen P, Pedersen EB, Rasmussen A, Mulvany MJ (1985): Abnormal vascular function and morphology in preeclampsia: a study of isolated resistance vessels. Clin Sci 69: 477–482.

    PubMed  CAS  Google Scholar 

  22. Folkow B (1979): Relationships between vessel design and hemodynamics along the precapillary resistance compartment in normo- and hypertension. Blood Vessels 16: 277–280.

    PubMed  CAS  Google Scholar 

  23. Folkow B, Karlström G (1984): Age- and pressure-dependent changes of systemic resistance vessels concerning the relationships between geometric design, wall distensibility, vascular reactivity and smooth muscle sensitivity. Acta Physiol Scand 122: 17–33.

    Article  PubMed  CAS  Google Scholar 

  24. Korner PI (1982): The Sixth Volhard Lecture. Causal and homeostatic factors in hypertension. Clin Sci 63: 5s-26s.

    PubMed  Google Scholar 

  25. Muirhead EE, Pitcock JA, Nasjletti A, Brown P, Brooks B (1985): The antihypertensive function of the kidney. Its elucidaion by captopril plus unclipping. Hypertension 7, Suppl I:I-127–I-135.

    CAS  Google Scholar 

  26. Masugi F, Ogihara T, Saeki S, Otsuka A, Kumahara Y (1985): Role of acetyl glyceryl ether phosphorylcholine in blood pressure regulation in rats. Hypertension 7: 742–746.

    PubMed  CAS  Google Scholar 

  27. Jones JV, Thoren PN (1977): Characteristics of aortic baroreceptors with non-medullated afferents arising from the aortic arch of rabbits with chronic renovascular hypertension. Acta Physiol Scand 101: 286–293.

    Article  PubMed  CAS  Google Scholar 

  28. Thoren P, Andresen MC, Brown AM (1983): Resetting of aortic baroreceptors with nonmyelinated afferent fibres in spontaneously hypertensive rats. Acta Physiol Scand 117: 91–97.

    Article  PubMed  CAS  Google Scholar 

  29. Folkow B (1986): The structural cardiovascular factor in primary hypertension - pressure dependence and genetic reinforcement. J Hypertension 4 (Suppl. 3): S51–S56.

    CAS  Google Scholar 

  30. Kanbe T, Nara Y, Tagami M, Yamori Y (1983): Studies of hypertension-induced vascular hypertrophy in cultured smooth musle cells from spontaneously hypertensive rats. Hypertension 5: 887–892.

    PubMed  CAS  Google Scholar 

  31. Yamori Y, Igawa T, Tagami M, Kanbe T, Nara Y, Kihara M, Horie R (1984): Humoral trophic influence on cardiovascular structural changes in hypertension. Hypertension 6, Suppl III: III-27–III-32.

    CAS  Google Scholar 

  32. Lundgren Y, Hallbäck M, Weiss L, Folkow B (1974): Rate and extent of adaptive cardiovascuar changes in rats during experimental renal hypertension. Acta Physiol Scand 91: 103–115.

    Article  PubMed  CAS  Google Scholar 

  33. Lundgren Y, Weiss L (1979): Cardiovascular design after ‘reversal’ of longstanding renal hypertension in rats. Clin Sci 57: 19–21.

    Google Scholar 

  34. Folkow B (1985): Vascular changes in hypertension. Therapeutic implications. Drugs 29, Suppl 2: 1–8.

    Article  PubMed  Google Scholar 

  35. Korner PI, Jennings GL, Esler MD (1986): Pathogenesis of human primary hypertension: a new approach to the identification of causal factors and to therapy. J Hypertension 4 (Suppl. 3): S149–S154.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht.

About this chapter

Cite this chapter

Folkow, B. (1987). Structural component of vascular resistance in hypertension. In: Safar, M.E., London, G.M., Simon, A.C., Weiss, Y.A. (eds) Arterial and Venous Systems in Essential Hypertension. Developments in Cardiovascular Medicine, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3303-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3303-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7983-9

  • Online ISBN: 978-94-009-3303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics