Skip to main content

Mineralogical Consequences of Organic Matter Degradation in Sediments: Inorganic/Organic Diagenesis

  • Chapter

Abstract

A significant fraction of the products of organic matter diagenesis is water soluble. Some products react directly to precipitate sedimentary minerals: carbonates, sulphides and phosphates. Low-temperature reactions are mostly microbial whereas later (deeper) reactions are thermally induced. Most of the soluble products are acidic and do not, by themselves, stimulate carbonate mineral precipitation. Reduction of Fe(III) by organic matter, however, causes massive increase in alkalinity. The balance between this and the microbial reactions is a major controlling influence on patterns of mineral diagenesis. Organic acids are produced during catagenesis and can cause mineral dissolution, both of carbonates and silicates. The permeability and porosity of sedimentary rocks may be modified with obvious consequences for petroleum geology. The amounts and types of acids generated are not well known. Equally poorly documented are the Fe(III)-organic matter reactions, yet these must affect both mineral authigenesis and organic maturation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berner, R. A. (1964). Iron sulphides formed from aqueous solution at low temperatures and atmospheric pressure, Journal of Geology 72, 293–306.

    Article  Google Scholar 

  • Berner, R. A. (1970). Sedimentary pyrite formation, American Journal of Science 268, 1–23.

    Article  Google Scholar 

  • Berner, R. A. (1974). Kinetic models for the early diagenesis of nitrogen, sulphur, phosphorus and silicon in anoxic marine sediments, In The Sea, Vol. 5, Goldberg (Ed.), New York, Wiley-Interscience, pp. 427–450.

    Google Scholar 

  • Bjorlykke, K. (1984). Formation of secondary porosity: how important is it? In Clastic Diagenesis, D. A. McDonald and R. C. Surdam (Eds), A.A.P.G. Memoir 37, pp. 277–286.

    Google Scholar 

  • Boles, J. R. and Franks, S. G. (1979). Clay diagenesis in Wilcox sandstones of south-west Texas: implications of smectite diagenesis on sandstone cementation, Journal of Sedimentary Petrology 49, 55–70.

    Google Scholar 

  • Boudreau, B. P. and Westrich, J. T. (1984). The dependence of bacterial sulphate reduction on sulphate concentration in marine sediments, Geochimica et Cosmochimica Acta 48, 2503–2516.

    Article  Google Scholar 

  • Campos, H. S. and Hallam, A. (1979). Diagenesis of English Lower Jurassic limestones as inferred from oxygen and carbon isotope analysis, Earth and Planetary Science Letters 45, 25–31.

    Article  Google Scholar 

  • Carothers, W. W. and Kharaka, Y. K. (1978). Aliphatic acid anions in oil-field waters and their implications for the origin of natural gas, Bulletin American Association Petroleum Geologists 62, 2441–2453.

    Google Scholar 

  • Carothers, W. W. and Kharaka, Y. K. (1980). Stable carbon isotopes of HCO3 in oil-field waters—implications for the origin of CO2. Geochimica et Cosmochimica Acta, 44, 323–332.

    Article  Google Scholar 

  • Cerling, T. E. (1984). The stable isotope composition of modern soil carbonate and its relationship to climate, Earth and Planetary Science Letters 71, 229–240.

    Article  Google Scholar 

  • Claypool, G. E. and Kaplan, I. R. (1974). The origin and distribution of methane in marine sediments, In Natural Gases in Marine Sediments, I. R. Kaplan (Ed.), New York, Plenum Press, pp. 99–139.

    Google Scholar 

  • Coleman, M. (1985). Geochemistry of diagenetic non-silicate minerals: kinetic considerations, Philosophical Transactions Royal Society, London Series A, 315, 39–56.

    Article  Google Scholar 

  • Curtis, C. D. (1977). Sedimentary geochemistry: environments and processes dominated by involvement of an aqueous phase, Philosophical Transactions, Royal Society, London Series A, 286, 353–372.

    Article  Google Scholar 

  • Curtis, C. D. (1983a). The link between aluminium mobility and destruction of secondary porosity, Bulletin American Association Petroleum Geologists 67, 380–384.

    Google Scholar 

  • Curtis, C. D. (1983b). Geochemistry of porosity enhancement and reduction in clastic sediments, In Petroleum Geochemistry and Exploration of Europe, Brooks (Ed.), Blackwell Scientific/Geological Society London, pp. 113–125.

    Google Scholar 

  • Curtis, C. D. (1985). Clay mineral precipitation and transformation reactions during burial diagenesis, Philosophical Transactions Royal Society, London, Series A, 315, 91–105.

    Article  Google Scholar 

  • Curtis, C. D. and Coleman, M. L. (1985). Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences, In The Relationship of Organic Matter and Mineral Diagenesis, Gautier (Ed.), S.E.P.M. Special Publication, No. 38, 23–33.

    Google Scholar 

  • Curtis, C. D., Hughes, C. R., Whiteman, J. A. and Whittle, C. K. (1985). Compositional variation within some sedimentary chlorites and some comments on their origin, Mineralog. Mag, 49, 375–386.

    Article  Google Scholar 

  • Curtis, C. D., Pearson, M. J. and Somogyi, V. (1975). Mineralogy, chemistry and origin of a concretionary siderite sheet (clay-ironstone band) in the Westphalian of Yorkshire, Mineralogical Magazine 40, 385–393.

    Article  Google Scholar 

  • Curtis, C. D. and Spears, D. A. (1968). The formation of sedimentary iron minerals, Economic Geology 63, 257 - 270.

    Article  Google Scholar 

  • Demaison, G. J. and Moore, G. T. (1980). Anoxic environments and oil source bed genesis, Bulletin American Association Petroleum Geologists 64, 1179–1209.

    Google Scholar 

  • Drever, J. I. (1971). Early diagenesis of clay mineral, Rio Ameca Basin, Mexico, Journal of Sedimentary Petrology 41, 982–994.

    Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A, Heath, G. R., Cullen, D. and Dauphin, P. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochimica et Cosmochimica Acta 43, 1075–1090.

    Article  Google Scholar 

  • Garrels, R. M. and Christ, C. L. (1965). Solutions, Minerals and Equilibria, W. H. Freeman, San Francisco.

    Google Scholar 

  • Hayes, J. B. (1970). Polytypism of chlorite in sedimentary rocks, Clays and Clay Minerals 18, 285–306.

    Article  Google Scholar 

  • Hayes, J. B. (1979). Sandstone diagenesis—the hole truth, In Aspects of Diagenesis, P. A. Scholle and P. R. Schluyer (Eds), S.E.P.M. Special Publications no. 26, pp. 127–139.

    Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A. (1976). Mechanism of burial-metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence, Geological Society of America Bulletin 87, 725–737.

    Article  Google Scholar 

  • Hunt, J. M. (1979). Petroleum Geochemistry and Geology, W. H. Freeman, San Francisco.

    Google Scholar 

  • Hutcheon, I., Oldershaw, A. and Ghent, E. D. (1980). Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (south-eastern British Columbia) and Mt Allan (south-western Alberta), Geochimica et Cosmochimica Acta 44, 1425–1435.

    Article  Google Scholar 

  • Iijima, A. and Matsumoto, S. R. (1982). Berthierine and chamosite in coal measures of Japan, Clays and Clay Minerals 30, 264–274.

    Article  Google Scholar 

  • Ireland, B. J., Curtis, C. D. and Whiteman, J. A. (1983). Compositional variation within some glauconites and illites and implications for their stability and origins, Sedimentology 30, 769–786.

    Article  Google Scholar 

  • Irwin, H. (1980). Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge Clay of Dorset, England. Sedimentology 27, 577–591.

    Article  Google Scholar 

  • Irwin, H., Curtis, C. D. and Coleman, M. (1977). Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–213.

    Article  Google Scholar 

  • Johns, W. D. (1979). Clay mineral catalysis and petroleum generation, Annual Review Earth and Planetary Science 7, 183–198.

    Article  Google Scholar 

  • Laplante, R. E. (1974). Hydrocarbon generation in Gulf Coast Tertiary sediments, Bulletin American Association Petroleum Geologists 58, 1281–1289.

    Google Scholar 

  • Leeder, M. R. (1982). Sedimentology: Process and Product, George Allen and Unwin, London.

    Google Scholar 

  • Lippmann, F. (1955). Ton, Geoden und Minerale des Barreme von Hoheneggelsen, Geolograches Rundschau 43, 475–503.

    Article  Google Scholar 

  • Matsumoto, R. and Iijima, A. (1981). Origin and diagenetic evolution of Ca-Mg-Fe carbonates in some coalfields of Japan, Sedimentology 28, 239–259.

    Article  Google Scholar 

  • Pearson, M. J. (1979). Geochemistry of the Hepworth Carboniferous sediment sequence and origin of the diagenetic iron minerals and concretions, Geochimica et Cosmochimica Acta 43, 927–941.

    Article  Google Scholar 

  • Raiswell, R. (1971). The growth of Cambrian and Liassic concretions, Sedimentology 17, 147–171.

    Article  Google Scholar 

  • Sass, E. and Kolodny, Y. (1972). Stable isotopes, chemistry and petrology of carbonate concretions (Mishash Formation, Israel), Chemical Geology 10, 261–286.

    Article  Google Scholar 

  • Schmidt, V. and McDonald, D. A. (1979). The role of secondary porosity in the course of sandstone diagenesis, In Aspects of Diagenesis, P. A. Scholle and P. R. Schluyer (Eds), S.E.P.M. Special Publication no. 26, pp. 175–207.

    Google Scholar 

  • Schmidt, V. and McDonald, D. A. (1979). The role of secondary porosity in the course of sandstone diagenesis, In Aspects of Diagenesis, P. A. Scholle and P. R. Schluyer (Eds), S.E.P.M. Special Publication no. 26, pp. 175–207.

    Google Scholar 

  • Tardy, Y. and Garrels, R. M. (1974). A method of estimating the Gibbs energies of formation of layer silicates, Geochimica et Cosmochimica Acta 38, 1101–1116.

    Article  Google Scholar 

  • Tissot, B., Durand, B., Espitalié, J. and Combaz, A. (1974). Influence of nature and diagenesis of organic matter in formation of petroleum, Bulletin American Association Petroleum Geologists 58, 499–506.

    Google Scholar 

  • Tissot, B. and Welte, D. H. (1978). Petroleum Formation and Occurrence, Springer-Verlag, Berlin.

    Google Scholar 

  • Tomkeiff, S. (1927). On the occurrence and the mode of origin of certain kaolinite-bearing nodules in the coal measures, Proceedings Geological Assocation 38, 518–547.

    Article  Google Scholar 

  • Weeks, L. G. (1953). Environment, mode of origin and facies relationships of carbonate concretions in shales, Journal of Sedimentary Petrology 23, 162–173.

    Google Scholar 

  • Wilson, M. D. and Pittman, E. D. (1977). Authigenic clays in sandstones: recognition and influence on reservoir properties and palaeo-environmental analysis, Journal of Sedimentary Petrology 47, p. 3–31.

    Google Scholar 

  • Wood, J. R. and Hewett, T. A. (1982). Fluid convection and mass transfer in porous sandstones—a theoretical model, Geochimica et Cosmochimica Acta 46, 1707–1713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 J. k. Leggett & G. G. Zuffa (Graham and Trotman)

About this chapter

Cite this chapter

Curtis, C. (1987). Mineralogical Consequences of Organic Matter Degradation in Sediments: Inorganic/Organic Diagenesis. In: Leggett, J.K., Zuffa, G.G. (eds) Marine Clastic Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3241-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3241-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7954-9

  • Online ISBN: 978-94-009-3241-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics