Glucagon and the human biliary tree

  • D. L. Carr-Locke


For many years following its discovery as a contaminant of insulin, glucagon was of little interest to gastroenterologists other than through its effects on glucose and glycogen metabolism. It is only relatively recently that the influences of glucagon on gastrointestinal motility, pancreatic and biliary secretion, and biliary motility have been realized, and it is these latter actions in man which are considered in this chapter. The relationship between glucagon and the human biliary tree will be discussed with respect to bile secretion, gallbladder motility, sphincter of Oddi motility and its clinical application in these areas insofar as this is not covered in other contributions to this workshop.


Bile Acid Bile Flow Bile Secretion Duodenal Papilla Bile Acid Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erlinger S. Physiology of bile secretion. In: Bouchier IAD, Allan RN, Hodgson HJF, Keighley MRB, eds. Textbook of Gastroenterology. London: Baillière Tindall 1984: 1380–1389.Google Scholar
  2. 2.
    Boyer JL. New concepts of mechanisms of hepatocyte bile formation. Physiol Rev 1980; 60: 303–326.PubMedGoogle Scholar
  3. 3.
    Moseley RH, Boyer JL. Mechanisms of electrolyte transport in the liver and their functional significance. Semin Liver Dis 1985; 5: 122–135.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyer JL. Tight junctions in normal and cholestatic liver: does the paracellular pathway have functional significance? Hematology 1983; 3: 614–617.Google Scholar
  5. 5.
    Jansson R, Steen G, Svanik J. A comparison of glucagon, gastric inhibitory peptide, and secretin on gallbladder function, formation of bile and pancreatic secretion in the cat. Scand J Gastroenterol 1978; 13: 919–925.PubMedCrossRefGoogle Scholar
  6. 6.
    Garberoglio CA, Bickerstaff KI, Baker AL, Moossa AR. Is glucagon a choleretic hormone at physiological blood levels? Am J Surg 1982; 143: 61–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Schirmer BD, Kortz WJ, Miller RM, Jones RS. Glucagon lowers biliary cholesterol output at physiological doses. Gastroenterology 1982; 82: 1171.Google Scholar
  8. 8.
    Bickerstaff KI, Garberoglio CA, Baker AL, Moossa AR. Hormonal control of biliary lipid secretion in dogs. Ann Surg 1983; 198: 168–171.PubMedCrossRefGoogle Scholar
  9. 9.
    Lin TM, Spray GF. Effect of pentagastrin, cholecystokinin, caerulein, and glucagon on the choledochal resistance and bile flow in conscious dog. Gastroenterology 1969; 56: 1178.Google Scholar
  10. 10.
    Kaminsky DL, Ruwart MJ, Jellinek M. Effect of glucagon on secretin-stimulated bile flow. Am J Physiol 1975; 229: 1480–1485.Google Scholar
  11. 11.
    Morris TQ, Sardi GF, Bradley SE. Character of glucagon induced choleresis. Fed Proc 1967; 26: 774.Google Scholar
  12. 12.
    Khedis A, Dumont M, Duval M, Erlinger S. Influence of glucagon on canalicular bile production in the dog. Biomedicine 1974; 21: 176–181.PubMedGoogle Scholar
  13. 13.
    Dyck K, Janowitz HD. Effect of glucagon on hepatic bile secretion in man. Gastroenterology 1971; 60: 400–404.PubMedGoogle Scholar
  14. 14.
    Jarrett LN, Bell GD. Effect of intravenous glucagon on the biliary secretion of a cholangiographic agent in man. Clin Radiol 1980; 31: 657–661.PubMedCrossRefGoogle Scholar
  15. 15.
    Dura K, Wedrichowicz A, Rucinski M. Effect of glucagon on bile lipids. Polski Tygod Lekar 1976; 31: 433–435.Google Scholar
  16. 16.
    Levine RA, Hall RC. Cyclic AMP in secretin choleresis. Evidence for a regulatory role in man and baboons but not in dogs. Gastroenterology 1976; 70: 537–544.PubMedGoogle Scholar
  17. 17.
    Poulantzas J, Polymeropoulos T, Papastamatiou L, Vachiotis P, Liassidis E. Biliary secretion after intravenous administration of glucagon. Presented at the 20th Biennial World Congress of the Internat Coll Surg, Athens 1976. Oxford: Excerpta Medica, 1976: 625.Google Scholar
  18. 18.
    Sarva RP, Schreiner DP, Van Thiel D, Yingvorapant N. Gallbladder function, methods for measuring filling and emptying. J. Nucl Med 1985; 26: 140–144.PubMedGoogle Scholar
  19. 19.
    Jazrawi RP, Lanzini A, Britten A, Meller ST, Northfield TC. Dynamics of gallbladder function and of the enterohepatic circulation studies by a γ-labelled bile acid. Clin Sci 1984; 66: 10P.Google Scholar
  20. 20.
    Lanzini A, Jazrawi RJ, Northfield TC. Does the gallbladder function as a pump or as a bellows? Gut 1983; 24: A475.Google Scholar
  21. 21.
    Vagne M, Troitskaja V. Effect of secretin, glucagon and VIP on gallbladder contraction. Digestion 1976; 14: 62–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin TM. Actions of gastrointestinal hormones and related peptides on the motor function of the biliary tract. Gastroenterology 1975; 69: 1006–1022.PubMedGoogle Scholar
  23. 23.
    Chernish SM, Miller RE, Rosenak BD, Scholz NE. Effect of glucagon on size of visualised human gallbladder before and after a fat meal. Gastroenterology 1982; 62: 1218–1226.Google Scholar
  24. 24.
    Cameron AJ, Phillips SF, Summerskill WHJ. Effect of cholecystokinin, gastrin, secretin and glucagon on human gallbladder muscle in vitro. Proc Soc Exp Biol Med 1969; 131: 149–154.PubMedGoogle Scholar
  25. 25.
    Oddi R. D’une exposition a sphincter speciale de l’ouverture du canal choledoque. Arch Ital Biol 1887; 8: 317–322.Google Scholar
  26. 26.
    Boyden EA. The sphincter of Oddi in man and certain representative mammals. Surgery 1937; 1: 25–37.Google Scholar
  27. 27.
    Carr-Locke DL, Gregg J A. Endoscopic manometry of pancreatic and biliary sphincter zones in man. Basal results in healthy volunteers. Dig Dis Sci 1981; 26: 7–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Geenen JE, Hogan WJ, Dodds WJ, Stewart ET, Arndorfer RC. Intraluminal pressure recording from the human sphincter of Oddi. Gastroenterology 1980; 78: 317–324.PubMedGoogle Scholar
  29. 29.
    International Workshop on Sphincter of Oddi Manometry, Rome, 1985. Ital J Gastroenterol 1986; 18: 31–45.Google Scholar
  30. 30.
    Carr-Locke DL, Gregg JA, Chey WY. Effects of exogenous secretin on pancreatic and biliary ductal and sphincteric pressures in man demonstrated by endoscopic manometry and correlation with plasma secretin levels. Dig Dis Sci 1985; 30: 909–917.PubMedCrossRefGoogle Scholar
  31. 31.
    Carr-Locke DL, Gregg, JA, Aoki TT. Effects of exogenous glucagon on pancreatic and biliary ductal and sphincteric pressures in man demonstrated by endoscopic manometry and correlation with plasma glucagon. Dig Dis Sci 1983; 62: 312–320.CrossRefGoogle Scholar
  32. 32.
    Carr-Locke DL. Effects of gut peptides on human sphincter of Oddi function. Ital J Gastroenterol 1986; 18: 43–45.Google Scholar
  33. 33.
    Rey JF, Corallo J, Lombart J, Pangtay-Tea J. The use of endoscopic manometry to demonstrate the effect of glucagon on the sphincter of Oddi. In, Picazo J, Ed. Glucagon in Gastroenterology and Hematology. Lancaster: MTP Press, 1982: 99–114.Google Scholar
  34. 34.
    Sarles JC, Delecourt P, Castello H, Gaeta L, Nacchiero M, Amoros JP, Devaux MA, Awad R. Action of gastrointestinal hormones on the myoelectrical activity of the sphincter of Oddi in the living rabbit. Regul Peptides 1981; 2: 113–124.CrossRefGoogle Scholar
  35. 35.
    Behar J. Comparative pharmacological characteristics of the lower esophageal sphincter (LES) and the sphincter of Oddi (SO) in the cat in vivo. Dig Dis Sci 1980; 25: 720.Google Scholar
  36. 36.
    Ponce J, Sala T, Pertejo V, Pina R, Berenguer J. Effect of glucagon applied topically in the duodenum on the motor activity of the sphincter of Oddi. Acta Endosc 1983; 13: 131–138.CrossRefGoogle Scholar
  37. 37.
    Rey JF, Greff M, Picazo J. Relaxation of the sphincter of Oddi by glucagon-(l-21)-peptide applied locally to the periampullary mucosa. Gut 1985; 26: 78.Google Scholar
  38. 38.
    Rey JF, Greff M, Picazo J. Glucagon-(l-21)-peptide. Study of its action on sphincter of Oddi function by endoscopic manometry. Dig Dis Sci 1986; 31: 355–360.PubMedCrossRefGoogle Scholar
  39. 39.
    Diamant B, Jorgensen KD, Weis JU. Structure-activity relationship for the spasmolytic action of glucagon. In: Picazo J, Ed. Glucagon in Gastroenterology and Hepatology. Lancaster: MTP Press, 1982: 25–36.Google Scholar
  40. 40.
    Jorgensen KD, Weis JU, Diamant B. Dissociation of the spasmolytic and metabolic effects of glucagon. Eur J Pharmacol 1983; 90: 315–323.CrossRefGoogle Scholar
  41. 41.
    Jones RM, Fiddian-Green R, Knight PR. Narcotic-induced choledochoduodenal sphincter spasm reversed by glucagon. Anesth Analg 1980; 59: 946–947.PubMedGoogle Scholar
  42. 42.
    McCammon RL, Stoelting R, Madura JA. Reversal of fentanyl-induced spasm of the sphincter of Oddi. Surg Gynecol Obstet 1983; 156: 329–334.PubMedGoogle Scholar
  43. 43.
    Pon MS, Cooperberg PL. Oral water and intravenous glucagon — to aid ultrasonic visualization of the common bile duct. J Can Assoc Radiol 1979; 30: 173–174.PubMedGoogle Scholar
  44. 44.
    Weighall SL, Wolfman NT, Watson N. The fluid-filled stomach: a new sonic window. J Clin Ultrasound 1979; 7: 353–356.PubMedCrossRefGoogle Scholar
  45. 45.
    Carr-Locke DL. Diagnosis. In: Bateson MC, ed. Gallstone Disease and its Management. Lancaster: MTP Press, 1986: 71–113.CrossRefGoogle Scholar
  46. 46.
    Canon P, Legge D. Glucagon as the hypotonic agent in cholangiography. Clin Radiol 1979; 30: 49–52.CrossRefGoogle Scholar
  47. 47.
    Evans AF, Whitehouse GW. The effect of glucagon on infusion cholangiography. Clin Radiol 1979; 30: 499–506.PubMedCrossRefGoogle Scholar
  48. 48.
    Jarrett LN, Doran J, Clifford K, Keane D, Knapp DR, Bell GD. Glucagon and infusion cholangiography. Br J Radiol 1982; 55: 269–271.PubMedCrossRefGoogle Scholar
  49. 49.
    Mueller PR, Harbin WP, Ferrucci JT, Wittenberg J, van Sonnenberg E. Fine-needle transhepatic cholangiography: reflections after 450 cases. Am J Roentgenol 1981; 136: 85–90.Google Scholar
  50. 50.
    Bordley J, Olson JE. The use of glucagon in operative cholangiography. Surg Gynecol Obstet 1979; 149: 583–584.PubMedGoogle Scholar
  51. 51.
    Tabak CA, Tuxen PL, Bruce DL, Juler GL. Glucagon enhancement of cholangiography. A preliminary report. Arch Surg 1983; 118: 84–85.PubMedGoogle Scholar
  52. 52.
    Treffot MJ, Quilichini F, Vinson MF. Biliary surgery, radiomanometry and glucagon. In: Picazo J, ed. Glucagon in Gastroenterology, Lancaster: MTP Press, 1979: 87–94.CrossRefGoogle Scholar
  53. 53.
    McCarthy JD. Biliary radiomanometry as an investigative tool in biliary tract disease. In: Picazo J, ed. Glucagon in Gastroenterology, Lancaster: MTP Press, 1979: 95–102.CrossRefGoogle Scholar
  54. 54.
    Ueda N, Kohriyama E, Suzuki Y, Takai Y, Okamura K, Ishibashi M, Mizushima K, Namiki M. Usefulness of glucagon as premedication for endoscopic retrograde cholangiopancreatography. (Jap). Gastroenterol Endosc 1983; 25: 1500–1505.Google Scholar
  55. 55.
    Hannigan BF, Axon ATR, Avery S, Thompson RPH. Buscopan or glucagon for endoscopic cannulation of ampulla of Vater? J Roy Soc Med 1982; 75: 21–22.PubMedGoogle Scholar
  56. 56.
    Silvis SE, Vennes JA. The role of glucagon in endoscopic cholangiopancreatography. Gastrointest Endosc 1975; 21: 162–163.PubMedCrossRefGoogle Scholar
  57. 57.
    Paul F. The role of glucagon in the treatment of biliary tract pathology. In: Picazo J, ed. Glucagon in Gastroenterology. Lancaster: MTP Press, 1979: 107–117.CrossRefGoogle Scholar
  58. 58.
    Brandstatter G, Kratochvil P. Glucagon bei Gallenkoliken. Therapiewoche 1979; 29: 3362–3365.Google Scholar
  59. 59.
    Stower MJ, Foster GE, Hardcastle JD. A trial of glucagon in the treatment of painful biliary tract disease. Br J Surg 1982; 69: 591–592.PubMedCrossRefGoogle Scholar
  60. 60.
    Hardcastle JD, Stower MJ, Foster GE. The use of glucagon in spastic disorders of the gastrointestinal tract. In: Picazo J, Ed. Glucagon in Gastroenterology. Lancaster: MTP Press, 1982: 115–127.Google Scholar
  61. 61.
    Grossi E, Broggini M, Quaranta M, Balestrino E. Different pharmacological approaches to the treatment of acute biliary colic. Curr Ther Res 1986; 40: 876–882.Google Scholar
  62. 62.
    Jacobson G, Nilsonn B, Nordgren CE, Selking O. Glucagon-(l-21)-peptide to prevent biliary colic pain. Lancet 1984; 2: 1149.PubMedCrossRefGoogle Scholar
  63. 63.
    Doman DB, Ginsberg AL. Glucagon infusion therapy for biliary tree stones. Gastroenterology 1981; 80: 1137.Google Scholar
  64. 64.
    Latshaw RF, Kadir S, Witt WS, Kaufman SL, White RI. Glucagon-induced choledochal sphincter relaxation: aid for expulsion of impacted calculi into the duodenum. Am J Roentgenol 1981; 137: 614–616.Google Scholar
  65. 65.
    Kobayashi M, Muto M, Shimada H, Kito F, Shinmyo K, Abe T, Kure H, Tsuchiya S. Effect of glucagon on hepatic bile in obstructive jaundice. (Jap). Nippon Shokakibyo Gakki Zassui 1982; 79: 952–955.Google Scholar
  66. 66.
    Constantopoulos A, Davakis M, Malamitsi-Pouchner A, Matsaniotis N. The effect of glucagon on serum bilirubin levels. Cytobios 1982; 35: 103–111.PubMedGoogle Scholar
  67. 67.
    Watanabe Y, Todani T, Kobayashi T, Fujii T, Arata A. Glucagon administration for the treatment of postoperative cholangitis after Kasai’s operation — a preliminary report. Z Kinderchir 1983; 38: 83–87.PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1987

Authors and Affiliations

  • D. L. Carr-Locke

There are no affiliations available

Personalised recommendations