Effect of glucagon on haemodynamics and gastrointestinal tract motility. Role of the glucagon receptor

  • L. Santamaria
  • E. De Miguel


Living organisms have the capacity to receive, internalize and transmit information which may be used in the process of some type of metabolic activity. In this connection, hormones play an important role in the regulation of metabolism. It is currently accepted that hormones are bearers of a message that they transmit to the ‘target cells’ which carry the specific receptors located in the plasma membranes of the cell; the signal that is generated from the binding of the hormone to its receptor will eventually affect an effector component.


Smooth Muscle Fibre Glucagon Receptor Autoradiographic Technique Portal Space Electron Microscope Autoradiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson PDI, Withrington PG. The vasodilator actions of isoprenaline, histamine, prostaglandin E2, glucagon and secretin on the hepatic arterial vascular bed of the dog. Br J Pharmacol 1976; 57: 581–588.PubMedGoogle Scholar
  2. 2.
    De Miguel E, Salgado G, Ginestal JM, Martínez-Veiga JL, Codoceo R, Santamaría L. Acción vasoactiva del glucagón sobre el sistema porta. I) Estudio en el sistema vascular mesentérico del perro. Rev Esp Enferm Apar Dig 1981; 59: 441–446.PubMedGoogle Scholar
  3. 3.
    Pohl SL. The glucagon receptor and its relationship to adenylate cyclase. Fed Proc 1977; 36: 2115–2118.PubMedGoogle Scholar
  4. 4.
    Lefkowitz RJ, Williams LT. Catecholamines binding to the β-adrenergic receptor. Proc Natl Acad Sci USA 1977; 74: 515–519.PubMedCrossRefGoogle Scholar
  5. 5.
    Houslay MD, Ellory JC, Smith GA, Hesketh TR, Stein JM, Warren GB, Metcalfe JC. Exchange of partners in glucagon receptor-adenylate cyclase complexes, physical evidence for the independent, mobile receptor model. Biochim Biophys Acta 1977; 467: 208–219.PubMedCrossRefGoogle Scholar
  6. 6.
    Forssmann WG, Ito S. Hepatocyte innervation in primates. J. Cell Biol 1977; 74: 299–313.PubMedCrossRefGoogle Scholar
  7. 7.
    Barazzone P, Gorden P, Carpentier JL, Orci L, Freychet P, Canivet B. Binding, internalization, and lysosomal association of 125I-glucagon in isolated rat hepatocytes. A quantitative electron microscope autoradiographic study. J Clin Invest 1980; 66: 1081–1093.PubMedCrossRefGoogle Scholar
  8. 8.
    Baumann G, Pnavilai G, Freinkel N, Domart AL, Metzger BE, Levene MB. Hepatic insulin and glucagon receptors in pregnancy: Their role in the enhanced catabolism during fasting. Endocrinology 1981; 108: 1979–1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Broer Y, Freychet P, Rosselin G. Insulin and glucagon receptor interaction in genetically obese Zucker rat. Studies of hormone binding and glucagon-stimulated cyclic AMP levels in isolated hepatocytes. Endocrinology 1977; 101: 236.PubMedCrossRefGoogle Scholar
  10. 10.
    Bhathena S, Home S, Schoechter GP, Rodman RS, Wahl L, Recant L. Pequerie identification of human mononuclear leukocytes bearing receptors of somatostatin and glucagon. Diabetes 1981; 30: 127–131.PubMedCrossRefGoogle Scholar
  11. 11.
    Striffler J A, Cardell EL, Cardell RR. Effects of glucagon on hepatic glycogen and smooth endoplasmic reticulum. Am J Anat 1981: 160: 363–379.PubMedCrossRefGoogle Scholar
  12. 12.
    Bregman MD, Trivedi D, Hruby VS. Glucagon amino groups. Evaluation of modifications leading to antagonism and agonism. J Biol Chem 1980; 252: 11725–11731.Google Scholar
  13. 13.
    Epand RM, Rosselin G, Hui Bon Hoa D, Cote TE, Laburthe M. Structural requirements for glucagon receptor binding and activation of adenylate cyclase in liver study of chemically modified forms of the hormone, including N-trinitrophenyl glucagon, and antagonist. J Biol Chem 1981: 256: 1128–1132.PubMedGoogle Scholar
  14. 14.
    Hruby VS, Agarwal NS, Griffem A, Bregman M, Nugent CS, Brendel K. Glucagon structure-function relationship using isolated rat hepatocytes. Biochim Biophys Acta 1981; 674: 383–390.PubMedGoogle Scholar
  15. 15.
    Wright DE, Hruby VS, Rodbell M. A reassessment of structure-function relationships in glucagon. Glucagon 1–21 is a full agonist. J Biol Chem 1978; 253: 6338–6340.PubMedGoogle Scholar
  16. 16.
    Diamant B, Jørgensen KD, Weis JU. Structure-activity relationship for the spasmolytic action of glucagon. In: Picazo J, ed. Glucagon in Gastroenterology and Hepatology. Lancaster: MTP Press, 1982: 25–35.Google Scholar
  17. 17.
    Kazmers A, Whitehouse WM, Lindenauer SM, Stanley JC. Dissociation of glucagon’s central and peripheral hemodynamic effects: Mechanism of reduction and redistribution of canine hindlimb blood flow. J Surg Res 1981; 30: 384–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Fasth S, Hultén L. The effect of glucagon on intestinal motility and blood flow. Acta Physiol Scand 1971; 83: 169–173.PubMedCrossRefGoogle Scholar
  19. 19.
    Gagnon G, Regoli D, Rioux F. A new bioassay for glucagon, Br J Pharmacol 1978; 64: 99–108.PubMedGoogle Scholar
  20. 20.
    Bitar KN, Jensen RT, Gardner JD, Makhlouf GM. Secretin, glucagon and VIP receptors on isolated gastric smooth muscle cells: Physiological relevance. Gastroenterology 1982; 82: 1018.Google Scholar
  21. 21.
    Andersson RGG. Cyclic AMP and calcium ions in mechanical and metabolic responses of smooth muscles. Influence of some hormones and drugs. Acta Physiol Scand 1972; suppl 382: 1–59.Google Scholar
  22. 22.
    Rasmussen H. Ions and second messengers. In: Weissman G, Clayborne R, eds. Cell Membranes Biochemistry, Cell Biology and Pathology. Tucson: HP Books, 1976: 203.Google Scholar
  23. 23.
    Behar J, Field S, Marin C. Effect of glucagon, secretin and vasoactive intestinal polypeptide on the feline lower oesophageal spincter: Mechanism of action. Gastroenterology 1979; 77: 1001.PubMedGoogle Scholar
  24. 24.
    Hogan WJ, Dodds WJ, Hoke SE, Reid DP, Kalkhoff RK, Arndorfer RC. Effect of glucagon on oesophageal motor function. Gastroenterology 1975; 69: 160.PubMedGoogle Scholar
  25. 25.
    Rogers AW. Techniques of Autoradiography. 3rd edn. Amsterdam: Elsevier North Holland Biomedical Press, 1979.Google Scholar
  26. 26.
    Backett NM, Parry DM. A new method for analysing microscope autoradiographs using hypothetical grain distributions. J Cell Biol 1973; 57: 9–15.CrossRefGoogle Scholar
  27. 27.
    Salpeter MM, Fertuck HC, Salpeter EE. Resolution in electron microscope autoradiography. III. Iodine-125. The effect of heavy metal staining and a reassessment of critical parameters. J Cell Biol 1977; 72: 161–173.PubMedCrossRefGoogle Scholar
  28. 28.
    Salpeter MM, McHenry FA, Salpeter EE. Resolution in electron microscope autoradiography. IV. Application to analysis of autoradiographs. J Cell Biol 1978; 76: 127–145.PubMedCrossRefGoogle Scholar
  29. 29.
    Fertuck HC, Salpeter MM. Quantitation of junctional and extra-junctional acetylcholine receptors by electron microscope autoradiography after 125I-Bungarotoxine binding at mouse neuromuscular junctions. J Cell Biol 1976; 69: 144–158.PubMedCrossRefGoogle Scholar
  30. 30.
    Santamaría L, De Miguel E. Localización de receptores para el glucagon en fibra muscular lisa intestinal y vascular en el perro. Utilización de técnicas autorradiográficas. Rev Esp Enferm Apar Dig 1985; 64: 301–308.Google Scholar
  31. 31.
    Santamaría L, De Miguel E, Codesal J. Detección de receptores para el glucagon en la arteria renal del perro. Determinación cuantitativa por medio de autoradiografia ultraestructural. Cir Esp 1986; 49: 1295–1301.Google Scholar
  32. 32.
    Miller RE, Chernish SM. The response of gastrointestinal tract motility to glucagon. In: Picazo J, ed. Glucagon in Gastroenterology and Hepatology. Lancaster: MTP Press, 1982; 37–53.Google Scholar
  33. 33.
    Kobayashi S, Suzuki M, Uchida T, Yanaihara N. Enkephalin neurons in the guinea pig duodenum: A light and electron microscopic immunocytochemical study using an antiserum to methionine. Enkephalin-Arg-Gly-Leu. Biomed Res 1984; 5: 489–506.Google Scholar
  34. 34.
    Greep RO, Weiss L. Histology. 3rd edn. New York: McGraw Hill, 1973.Google Scholar
  35. 35.
    Gelman S, Einst EA. Role of pH, pCO2 and PO2 content of portal blood in hepatic circulatory autoregulation. Am J Physiol 1977; 233: 225–262.Google Scholar
  36. 36.
    Swan KC, Reynolds DG. Adrenergic mechanisms in canine mesenteric circulation. Am J Physiol 1971; 17: 79–85.Google Scholar
  37. 37.
    Laine GA, Hall JT, Laine SM, Granger HJ. Trans-sinusoidal fluid dynamics in canine liver during venous hypertension. Circ Res 1979; 45: 317–323.PubMedGoogle Scholar
  38. 38.
    Aaron S, Fulton R, Mays ET. Selective ligation of the hepatic artery for trauma of the liver. Surg Gynecol Obstet 1975: 141: 187–189.PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1987

Authors and Affiliations

  • L. Santamaria
  • E. De Miguel

There are no affiliations available

Personalised recommendations