A clinical perspective on hepatic regeneration

  • A. L. Baker


Despite continuing study, uncertainty persists about the basic mechanisms underlying hepatic regeneration. A growing body of evidence suggests that circulating hormones and other growth promoting factors are involved in the process, but there is less information about how these substances bind to hepatocyte membrane and initiate intracellular signals resulting in DNA synthesis and cell proliferation. The purpose of this review is to summarize recent studies which shed light on some of the processes involved in hepatic regeneration and to highlight the clinical studies which have attempted to apply these principles to the treatment of patients with liver disease.


Liver Regeneration Partial Hepatectomy Fulminant Hepatic Failure Alcoholic Hepatitis Hepatic Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marchioro TL, Porter KA, Dickinson TC, Faris TD, Starzl TE. Physiologic requirements for auxiliary liver transplantation. Surg Gynecol Obstet 1965; 121: 17–31.PubMedGoogle Scholar
  2. 2.
    Starzl T E, Francavilla A, Halgrimson C G, Francavilla F R, Porter K A, Brown T H, Putnam C W. The origin, hormonal nature, and action of hepatotrophic substances in portal venous blood. Surg Gynecol Obstet 1973; 137: 179–199.PubMedGoogle Scholar
  3. 3.
    Max MH, Price JB, Takeshige K, Voorhees AB. The role of factors of portal origin in modifying hepatic regeneration. J Surg Res 1972; 12: 120–123.PubMedCrossRefGoogle Scholar
  4. 4.
    Bucher NLR, Swaffield MN. Regulation of hepatic regeneration in rats by synergistic action of insulin and glucagon. Proc Natl Acad Sci USA 1975; 72: 1157–1160.PubMedCrossRefGoogle Scholar
  5. 5.
    Starzl TE, Francavilla A, Porter K A, Benichom J. The effect upon the liver of evisceration with or without hormone replacement. Surg Gynecol Obstet 1978; 146: 524–531.PubMedGoogle Scholar
  6. 6.
    Baker A L. Hepatotrophic factors: basic concepts and clinical implications. Acta Med Scand 1985; Suppl 703: 201–208.Google Scholar
  7. 7.
    Bucher NLR, Patel U, Cohen S. Hormonal factors and liver growth. Adv Enz Regul 1978; 16: 205–213.CrossRefGoogle Scholar
  8. 8.
    Bucher NLR, Patel U, Cohen S. Hormonal factors concerned with liver regeneration. In: Porter R, Whelan J, eds. Hepatotrophic Factors. Ciba Foundation Symposium, No. 55. Amsterdam: Elsevier, Excerpta Medica, North-Holland, 1978: 95–107.Google Scholar
  9. 9.
    Leffert H L, Koch K S, Moran T, Rubalcava B. Hormonal control of rat liver regeneration. Gastroenterology 1979; 76: 1470–1482.PubMedGoogle Scholar
  10. 10.
    Short J, Brown RF, Husakova A, Gilbertson JR, Zemel R, Lieberman I. Induction of deoxyribonucleic acid synthesis in the liver of the intact animal. J Biol Chem 1972; 247: 1757–1766.PubMedGoogle Scholar
  11. 11.
    Canzanelli AD, Rapport D, Guild P. Control of liver regeneration and nucleic acid content by the thyroid with observation on the effects of pyrimidines. Am J Physiol 1949; 157: 225–233.PubMedGoogle Scholar
  12. 12.
    Leffert H L, Koch K S. Proliferation of hepatocytes. In: Porter R, Whelan J, eds. Hepatotrophic Factors. Ciba Foundation Symposium, No. 55. Amsterdam: Elsevier, Excerpta Medica, North-Holland, 1978: 61–94.Google Scholar
  13. 13.
    Rixon RH, Whitfield JF. The control of liver regeneration by parathyroid hormone and calcium. J Cell Physiol 1976; 87: 147–156.CrossRefGoogle Scholar
  14. 14.
    Andreis PG, Armato U, Whitfield JF. The calcium-dependent stimulation of the proliferation of neonatal rat hepatocytes by imidazole and indomethacin. Chem-Biol Interact 1981; 37: 25–39.PubMedCrossRefGoogle Scholar
  15. 15.
    Leffert HL, Alexander NM, Faloona G, Rubalcava B, Unger RH. Specific endocrine and hormonal receptor changes associated with liver regeneration in adult rats. Proc Natl Acad Sci USA 1975; 72: 4033–4036.PubMedCrossRefGoogle Scholar
  16. 16.
    Morley C G D, Kuku S, Rubenstein A H, Boyer J L. Serum hormone levels following partial hepatectomy in the rat. Biochem Biophys Res Commun 1975; 67: 653–661.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen D M, Jaspan J B, Polonsky K S, Lever E G, Moossa A R. Pancreatic hormone profiles and metabolism post-hepatectomy in the dog. Evidence for a hepatotrophic role of insulin, glucagon, and pancreatic polypeptide. Gastroenterology 1984; 87: 679–687.PubMedGoogle Scholar
  18. 18.
    Armato U, Andreis PG. Prostaglandins of the F series are extremely powerful growth factors in primary neonatal rat hepatocytes. Life Sci 1983; 33: 1745–1755.PubMedCrossRefGoogle Scholar
  19. 19.
    Miura Y, Fukui N. Prostaglandins as possible triggers for liver regeneration after partial hepatectomy. A review. Cell Mol Biol 1979; 25: 179–184.Google Scholar
  20. 20.
    Blomqvist K. Growth stimulation in the liver and tumor development following intraperitoneal injections of liver homogenates in the rat. Acta Pathol Microbiol Scand 1957; Suppl 121: 65–87.Google Scholar
  21. 21.
    LaBrecque DR, Bachur NR. Hepatic stimulator substance: physicochemical characteristics and specificity. Am J Physiol 1982; 242: G281-G288.PubMedGoogle Scholar
  22. 22.
    Francavilla A, DiLeo A, Polimeno L, Gavaler J, Pellicci R, Todo S, Kam I, Prelich J, Makowka L, Starzl T E. The effect of hepatic stimulatory substance, isolated from regenerating hepatic cytosol, and 50 000 and 300 000 subfractions in enhancing survival in experimental acute hepatic failure in rats treated with D-galactosamine. Hepatology 1986; 6: 1346–1351.PubMedCrossRefGoogle Scholar
  23. 23.
    Pickart L, Thaler M M. Tripeptide in human serum which prolongs survival of normal liver cells and stimulates the growth of hepatoma cells. Nature New Biol 1973; 243: 85–87.PubMedGoogle Scholar
  24. 24.
    Pickart L, Thaler MM. Growth-modulating tripeptide (glycylhistidyllysine): association with copper and iron in plasma, and stimulation of adhesiveness and growth of hepatoma cells in culture by tripeptide-metal ion complexes. J Cell Physiol 1980; 102: 129–139.PubMedCrossRefGoogle Scholar
  25. 25.
    Caruana J A, Gage A A. Increased uptake of insulin and glucagon as a signal of regeneration. Surg Gynecol Obstet 1980; 150: 390–394.PubMedGoogle Scholar
  26. 26.
    Mourelle M, Rubalcava B. Changes in the insulin and glucagon receptors in the regenerating liver following intoxication with carbon tetrachloride. Biochem Biophys Res Commun 1979; 88: 189–198.PubMedCrossRefGoogle Scholar
  27. 27.
    Pezzino V, Vigneri R, Cohen D, Goldfine ID. Regenerating rat liver: insulin and glucagon serum levels and receptor binding. Endocrinology 1981; 108: 2163–2169PubMedCrossRefGoogle Scholar
  28. 28.
    Editorial. Polypeptide growth factors: a clinical perspective. Lancet 1985, 2: 251–253.Google Scholar
  29. 29.
    Friedman J M, Chung E Y, Darnell J E Jr. Gene expression during liver regeneration. J Mol Biol 1984; 179: 37–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Petropoulos C, Andrews G, Tamaoki T, Fausto N. α-Fetoprotein and albumin mRNA levels in liver regeneration and carcinogenesis. J Biol Chem 1983; 258: 4901–4906.PubMedGoogle Scholar
  31. 31.
    Fausto N. Messenger RNA in regenerating liver: implications for the understanding of regulated growth. Mol Cell Biochem 1984; 59: 131–147.PubMedCrossRefGoogle Scholar
  32. 32.
    Andrews GK, Dziadek M, Tamaoki T. Expression and methylation of the mouse α- fetoprotein gene in embryonic, adult, and neoplastic tissues. J Biol Chem 1982; 257: 5148–5153.PubMedGoogle Scholar
  33. 33.
    Panduro A, Shalaby F, Weiner FR, Biempica L, Zern MA, Shafritz DA. Transcriptional switch from albumin to α-fetoprotein and changes in transcription of other genes during carbon tetrachloride-induced liver regeneration. Biochemistry 1986; 25: 1414–1420.PubMedCrossRefGoogle Scholar
  34. 34.
    Goyette M, Petropoulos C J, Shank P R, Fausto N. Expression of a cellular oncogene during liver regeneration. Science 1983; 219: 510–512.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamaguchi N, Kodama M, Ueda K. Di-adenosine tetraphosphate as a signal molecule linked with the functional state of rat liver. Gastroenterology 1985; 89: 723–731.PubMedGoogle Scholar
  36. 36.
    Bissell D M. Peculiar purine nucleotide and liver regeneration. Gastroenterology 1985; 89: 914–916.PubMedGoogle Scholar
  37. 37.
    Rikkers LF, Rudman D, Galambos JT, Fulenwider T, Millikan WT, Kutner M, Smith RB, Salamn A A, Jones A J, Warren W D. A randomized, controlled trial of the distal splenorenal shunt. Ann Surg 1978; 188: 271–281.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamaoka Y, Sato M, Kimura K, Takasan H, Ozawa K. Role of portal venous blood supply from the pancreas in maintaining hepatic functional reserve. Appraisal of Warren’s shunt operation. Arch Surg 1978; 113: 981–985.PubMedGoogle Scholar
  39. 39.
    Baker A L, Jaspan J B, Haines N W, Hatfield G E, Krager P S, Schneider J F, The University of Chicago Medical House-Staff. A randomized clinical trial of insulin and glucagon infusion for treatment of alcoholic hepatitis: progress report in 50 patients. Gastroenterology 1981; 80: 1410–1414.PubMedGoogle Scholar
  40. 40.
    Radvan G, Kanel G, Redeker A. Insulin and glucagon infusion in acute alcoholic hepatitis. Gastroenterology 1982; 82: 1154.Google Scholar
  41. 41.
    Oka H, Okita K, Fujiwara K. Glucagon and insulin therapy in fulminant hepatic failure in Japan. In: Picazo J, ed. Glucagon in Gastroenterology and Hepatology. Lancaster: MTP Press, 1982: 171–180.Google Scholar
  42. 42.
    Takahashi Y, Shimizu M, Kosaka M. Nationwide statistics of severe hepatitis (fulminant hepatitis) (Jap). Saishin Igaku 1979; 34: 2285–2292.Google Scholar

Copyright information

© MTP Press Limited 1987

Authors and Affiliations

  • A. L. Baker

There are no affiliations available

Personalised recommendations