Advertisement

Bicyclo[3.1.1]heptanes

  • James K. Whitesell
  • Mark A. Minton
Chapter

Abstract

Using exo/endo and syn/anti to designate stereochemical relationships in bicyclo[3.1.1]heptanes creates problems because this system is based on the orientation of groups relative to the unique, smallest bridge. The M/G system defined in Chapter 6 for the bicyclo[2.2.2]octanes is equally applicable here. Briefly, a sense of rotation (clockwise or counterclockwise) is defined for an axis that passes through both bridgehead atoms based upon the ordering of assigned numbers for the atoms adjacent to atom 1. Substituents that are oriented with this sense of rotation are defined as M (mit) while those opposed are G (gegen). For monosubstituted compounds, the numbering system is defined so that the substituent is M.

Keywords

Research Laboratory Numbering System Assigned Number Small Bridge Stereochemical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Bicyclo[3.1.1]heptanes and related* systems

  1. *1.
    Andersen, N. H., Bissonette, P., Liu, C.-B., Shunk, B., Ohta, Y., Tseng, C.-L. W., Moore, A. and Huneck, S., Phytochem. 16, 1731 (1977).CrossRefGoogle Scholar
  2. 2.
    Hall, M. C., Kinns, M. and Wells, E. J., Org. Magn. Reson. 21, 108 (1983).CrossRefGoogle Scholar
  3. 3.
    Offermann, W., Org. Magn. Reson. 20, 203 (1982).CrossRefGoogle Scholar
  4. 4.
    Forsyth, D. A., Mahmoud, S. and Giessen, B. C., Org. Magn. Reson. 19, 89 (1982).CrossRefGoogle Scholar
  5. 5.
    Weigand, E. W. and Schneider, H.-J., Org. Magn. Reson. 12, 637 (1979).CrossRefGoogle Scholar
  6. 6.
    Brun, P., Casanova, J., Hatem, J., Zahra, J. P. and Waegell, B., Org. Magn. Reson. 12, 537 (1979).CrossRefGoogle Scholar
  7. 7.
    Szeimies, G., Schlosser, A., Philipp, F., Dietz, P. and Mickler, W., Chem. Ber. 111, 1922 (1978).CrossRefGoogle Scholar
  8. 8.
    Bohlmann, F., Zeisberg, R. and Klein, E., Org. Magn. Reson. 7, 426 (1975).CrossRefGoogle Scholar
  9. 9.
    Johnson, L. F. and Jankowski, W. C., “Carbon-13 NMR Spectra”, Wiley-Interscience, New York (1972).Google Scholar
  10. 10.
    Jautelat, M., Grutzner, J. B. and Roberts, J. D., Proc. Natl. Acad. Sci. 65, 288 (1970).CrossRefGoogle Scholar
  11. 11.
    Holden, C. M. and Whittaker, D., Org. Magn. Reson. 7, 125 (1975).CrossRefGoogle Scholar
  12. 12.
    Reisse, J., Piccinni-Leopardi, C., Zahra, J. P., Waegell, B. and Fournier, Org. Magn. Reson. 9, 512 (1977).CrossRefGoogle Scholar
  13. 13.
    Lysenkov, V. I., Pekhk, T. I., Lippmaa, E. T. and Zheleznyak, T. L., J. Org. Chem. USSR 17, 1436 (1981).Google Scholar
  14. 14.
    Kane, B. J., Marcelin, G. and Traynor, S. G., J. Org. Chem. 45, 895 (1980).CrossRefGoogle Scholar
  15. 15.
    Grover, S. H., Marr, D. H., Stothers, J. B. and Tan, C. T., Can. J. Chem. 53, 1351 (1975).CrossRefGoogle Scholar
  16. 16.
    Della, E. W., Cotsaris, E., Hine, P. T. and Pigou, P. E., Aust. J. Chem. 34, 913 (1981).CrossRefGoogle Scholar
  17. 17.
    Della, E. W. and Pigou, P. E., Aust. J. Chem. 36, 2261 (1983).CrossRefGoogle Scholar
  18. 18.
    Della, E. W., Cotsaris, E. and Hine, P. T., J. Am. Chem. Soc. 103, 4131 (1981).CrossRefGoogle Scholar
  19. 19.
    Della, E. W. and Pigou, P. E., J. Am. Chem. Soc. 104, 862 (1982).CrossRefGoogle Scholar
  20. 20.
    Himmele, W. and Siegel, H., Tetrahedron Lett. 907 (1976).Google Scholar
  21. 21.
    Bessiere, Y., Grison, C. and Boussac, G., Tetrahedron 34, 1957 (1978).CrossRefGoogle Scholar
  22. 22.
    Bessiere, Y., Barthélémy, M., Thomas, A. F., Pickenhagen, W. and Starkemann, C., Nouv. J. Chim. 2, 365 (1978).Google Scholar
  23. 23.
    Ericsson, A., Kowalewski, J., Liljefors, T. and Stilbs, P., J. Magn. Reson. 38, 9 (1980).Google Scholar
  24. *24.
    Thomas, A. F., Thommen, W. and Becker, J., Helv. Chim. Acta 64, 161 (1981).CrossRefGoogle Scholar
  25. 25.
    Hoppmann, A., Weyerstahl, P. and Zummack, W., Liebigs Ann. Chem. 1547 (1977).Google Scholar
  26. 26.
    Marschall, H., Penninger, J. and Weyerstahl, P., Liebigs Ann. Chem. 49 (1982).Google Scholar
  27. 27.
    Gassman, P. G. and Proehl, G. S., J. Am. Chem. Soc. 102, 6862 (1980).CrossRefGoogle Scholar
  28. 28.
    Gassman, P. G. and Oison, K. D., J. Am. Chem. Soc. 104, 3740 (1982).CrossRefGoogle Scholar
  29. 29.
    Della, E. W. and Pigou, P. E., J. Am. Chem. Soc. 106, 1085 (1984).CrossRefGoogle Scholar
  30. 30.
    Brown, H. C. and Ford, T. M., J. Org. Chem. 46, 647 (1981).CrossRefGoogle Scholar
  31. 31.
    Burgar, M. I., Karba, D. and Kikelj, D., Farm. Vestnik 30, 253 (1979).Google Scholar
  32. 32.
    Formacek, V. and Kubeczka, K.-H., “Vorkommen und Analytik Ätherische Ole”, Kubeczka, K.-H. Ed., Thieme, Stuttgart, 1979, p 130.Google Scholar
  33. 33.
    Banert, K., Kirmse, W. and Wroblowsky, H.-J., Chem. Ber. 116, 3591 (1983).CrossRefGoogle Scholar
  34. 34.
    Blunt, J. W. and Steel, P. J., Aust. J. Chem. 35, 2561 (1982).CrossRefGoogle Scholar
  35. 35.
    Uchio, Y., Matsuo, A., Kakayama, M. and Hayashi, S., Tetrahedron Lett. 2963 (1976).Google Scholar
  36. 36.
    Sadtler Standard Carbon-13 NMR Spectra, Sadtler Research Laboratories, Inc., Philadelphia, Pa.Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • James K. Whitesell
  • Mark A. Minton

There are no affiliations available

Personalised recommendations