Skip to main content

The technology of aerobic yeast growth

  • Chapter

Abstract

This chapter is concerned with the selection and operation of different types of fermentation apparatus for producing yeast products. The importance of such considerations as the biochemical pathways and microbial physiology of particular yeast strains, scale of operation, value of product, degree of sterility, nature of product and whether it is produced intracellularly or extracellularly on the selection of fermentation techniques will be discussed. Reference will be made to different industries which grow yeast aerobically, e.g. baker’s yeast, the production of fodder (feed) yeast, yeast enzymes and other intracellular yeast components and genetically engineered products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aunstrup, K. 1983. Enzymes of industrial interest — traditional products. Annual Reports on Fermentation Processes 6, 175–201.

    CAS  Google Scholar 

  • Aunstrup, K., O. Andersen, E. A. Falch and K. N. Tage 1979. Production of microbial enzymes. In Microbial technology, H. J. Peppier and D. Perlman (eds), Vol. 2, 292–311. New York: Academic Press.

    Google Scholar 

  • Barford, J. P. 1984a. The control of respiration and fermentation in yeasts — a unified approach. 7th International Special Symposium on Yeasts, New Delhi (in press).

    Google Scholar 

  • Barford, J. P. 1984b. The control of fermentation and respiration in yeasts. 6th Australian Biotechnology Conference, Brisbane, 335–44.

    Google Scholar 

  • Barford, J. P. and R. J. Hall 1976. Estimation of the length of cell cycle phases from an asynchronous culture of S. cerevisiae. Experimental Cell Research 102, 276–84.

    Article  CAS  Google Scholar 

  • Barford, J. P. and R. J. Hall 1979. An examination of the crabtree effect in Saccharomyces cerevisiae— the role of respiratory adaptation. Journal of General Microbiology 106, 267–75.

    Google Scholar 

  • Barford, J. P. and R. J. Hall 1981. A mathematical model for the aerobic growth of Saccharomyces cerevisiaewith a saturated respiratory capacity. Biotechnology and Bioengineering 23, 1763–96.

    Article  Google Scholar 

  • Barford, J. P., P. M. Jeffery and R. J. Hall 1981. The crabtree effect in Saccharomyces cerevisiae— primary control mechanism or transient? Advances in Biotechnology 1, 255–60.

    CAS  Google Scholar 

  • Beck, C. and H. K. von Meyenburg 1968. Enzyme pattern and aerobic growth of Saccharomyces cerevisiaeunder various degrees of glucose limitation. Journal of Bacteriology 96, 479–86.

    CAS  Google Scholar 

  • Beggs, J. D. 1978. Transformation of yeast by replicant hybrid plasmid. Nature(London) 275, 104–9.

    Article  CAS  Google Scholar 

  • Bocharova, N. N., V. G. Chernysh and V. P. Ozerova 1976. Keeping characteristics of pressed yeast. Khlebopek Konditer Proms 18, 37–8.

    Google Scholar 

  • Boing, J. T. P. 1983. Enzyme production. In Industrial microbiology, G. Reed (ed.), 634–708. Westport: AVI.

    Google Scholar 

  • Breunig, K. G., V. Mackendonski and C. P. Hollenberg 1982. Transcription of the bacterial β-lactamase gene in Saccharomyces cerevisiae. Gene 20, 1–10.

    Article  CAS  Google Scholar 

  • Dellweg, H., H. K. Bronn and W. Hartmeier 1977. Respiration rates of growing and fermenting yeast. Kem Kemi 4(12), 611–15.

    CAS  Google Scholar 

  • Demain, A. L. 1978. Production of nucleosides and nucleotides by microorganisms. In Economic microbiology, A. H. Rose (ed.), Vol. 2, 187–209. New York: Academic Press.

    Google Scholar 

  • Derynck, R., A. Singh and D. V. Goeddel 1983. Expression of the human interferon-γ cDNA in yeast. Nucleic Acids Research 11(6), 1819–37.

    Article  CAS  Google Scholar 

  • Figueroa, de L. I., M. F. de Richard and M. R. de van Broock 1984. Interspecific protoplast fusion of baker’s yeast S. cerevisiaeand S. diastaticus. Biotechnology Letters 6(4), 269–74.

    Article  Google Scholar 

  • Gaden, E. L. and A. E. Humphrey 1977. Single cell protein from renewable resources. New York: Wiley.

    Google Scholar 

  • Gritz, L. and J. Davies 1983. Plasmid encoded hygromycin B resistance: the sequence of hygromycin b phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25, 179–88.

    Article  CAS  Google Scholar 

  • Hall, R. J. and J. P. Barford 1981. A simulation of the integration of the internal energy metabolism and the cell cycle of Saccharomyces cerevisiae. Biotechnology and Bioengineering 23, 1763–96.

    Article  CAS  Google Scholar 

  • Hitzeman, R. A., F. E. Hagie, H. L. Levine, D. V. Goeddel, G. Ammerer and B. J. Hall 1981. Expression of a human gene for interferon in yeast. Nature(London) 293, 717–22.

    Article  CAS  Google Scholar 

  • Hitzeman, R. A., D. W. Leung, L. J. Perry, W. J. Kohr, H. L. Levine and D. V. Goeddel 1983. Secretion of human interferons by yeast. Science 219, 620–5.

    Article  CAS  Google Scholar 

  • Ho, N. W. Y., P. S. Jervis, S. Rosenfeld, J. J. Huang and S. T. Tsao 1983. Expression of the E. colixylose isomerase gene by a yeast promoter. Biotechnology and Bioengineering Symposia 13, 245–50.

    CAS  Google Scholar 

  • Hoehne, R. 1975. Belüftungssystein für Grossfernter. Branntweinwirtschaft 115(22), 400–1.

    Google Scholar 

  • Laskin, A. I. 1977. Single cell protein. Annual Reports on Fermentation Processes 1, 151–80.

    CAS  Google Scholar 

  • Litchfield, H. J. 1979. Production of single cell protein for use in food or feed. In Microbial technology, H. J. Peppier and D. Perlman (eds), Vol. 2, 93–156. New York: Academic Press.

    Google Scholar 

  • Margaritis, A. and J. B. Wallace 1984. Novel bioreactor systems and their applications. Biotechnology 1(5), 447–53.

    Google Scholar 

  • Mellor, J., M. J. Dobson, N. A. Roberts, M. F. Tuite, J. S. Emtage, S. White, P. A. Lowe, T. Patel, A. J. Kingsman and S. M. Kingsman 1983. Efficient synthesis of enzymically active chymosin in Saccharomyces cerevisiae. Gene 24, 1–14.

    Article  CAS  Google Scholar 

  • Meyenburg, von H. K. 1969. Katabolit-repression und der Sprossungszyklus von Saccharomyces cerevisiae. Ph.D. thesis, Zurich.

    Google Scholar 

  • Moo-Young, M. and H. W. Blanch 1981. Design of biochemical reactors: mass transfer criteria for simple and complex systems. Advances in Biochemical Engineering 19, 1–69.

    CAS  Google Scholar 

  • Mowshowitz, D. B. 1979. Gene dosage effects on the synthesis of maltose in yeast. Journal of Bacteriology 137, 1200–7.

    CAS  Google Scholar 

  • Nakao, Y. 1979. Microbial production of nucleosides and nucleotides. In Microbial technology, H. J. Peppier and D. Perlman (eds), Vol. 2, 312–55. New York: Academic Press.

    Google Scholar 

  • Oldshue, J. Y. 1966. Fermentation mixing scale-up techniques. Biotechnology and Bioengineering 8, 3–24.

    Article  Google Scholar 

  • Oosterhuis, N. M. G. and N. F. Kossen 1983. Oxygen transfer in a production scale bioreactor. Chemical Engineering Research and Design 61(5), 308–12.

    CAS  Google Scholar 

  • Oosterhuis, N. M. G., V. M. Graesbeek, A. P. C. Olivier and N. W. F. Kossen 1983. Scale-down aspects of the gluconic acid fermentation. Biotechnology Letters 5, 141–6.

    Article  CAS  Google Scholar 

  • Pace, G. W. 1984. Scale-up criteria for fermentation systems. Biotechnology Training Course Notes, University of Queensland.

    Google Scholar 

  • Panchal, C. J., I. Russell, A. M. Sills and G. G. Stewart 1984. Genetic manipulation of brewing and related yeast strains. Food Technology 99, 1068–111.

    Google Scholar 

  • Panek, A. D. 1975. Trehalose synthesis during starvation of baker;’s yeast. European Journal of Applied Microbiology 2(1), 39–46.

    Article  CAS  Google Scholar 

  • Peppler, H. J. 1977. Production of yeast and yeast products. In Microbial technology, H. J. Peppier and D. Perlman (eds), Vol. 2, 157–87. New York: Academic Press.

    Google Scholar 

  • Peppler, H. J. 1983. Ventures in yeast utilisation. Annual Reports on Fermentation Processes 6, 237–51.

    Google Scholar 

  • Prince, I. G. and J. P. Barford 1982a. Continuous tower fermentation for power alcohol production. Biotechnology Letters 4(4), 265–8.

    Article  Google Scholar 

  • Prince, I. G. and J. P. Barford 1982b. Tower fermentation of sugar cane juice. Biotechnology Letters 4(7), 469–74.

    Article  CAS  Google Scholar 

  • Prince, I. G. and J. P. Barford 1982c. Induced flocculation of yeasts for use in the tower fermenter. Biotechnology Letters 4(10), 621–6.

    Article  Google Scholar 

  • Prince, I. G. and J. P. Barford 1984. Flow and kinetic parameter estimation in a heterogeneous continuous fermenter. 5th Australian Biotechnology Conference, Brisbane, 293–500.

    Google Scholar 

  • Reed, G. 1982. Production of baker’s yeast. In Industrial microbiology, G. Reed (ed.), 593–633. Westport: AVI.

    Google Scholar 

  • Reed, G. and H. J. Peppier 1973. Yeast technology. Westport: AVI.

    Google Scholar 

  • Rehm, H. J. and G. Reed 1983. Biotechnology, Vol. 3. Berlin: Springer-Verlag.

    Google Scholar 

  • Rosen, K. 1977. Production of baker’s yeast. Process Biochemistry 12(3), 10–12.

    Google Scholar 

  • Russell, I. andG. G. Stewart 1979. Spheroplast fusion of brewer’s yeast strains. Journal of the Institute of Brewing 85, 95–8.

    Google Scholar 

  • Schreier, K. 1975. Neuer Hochleistungsfermenter nach dem Tauchstrahlverfahren. Chemiker-Zeitung 99(7), 328–31.

    CAS  Google Scholar 

  • Schwartzkoff, C. L. and J. P. Barford 1981. Macromolecular composition of yeast as a function of life cycle. Advances in Biotechnology 2, 387–92.

    CAS  Google Scholar 

  • Schwartzkoff, C. L. and P. L. Rogers 1982. Glycogen synthesis by glucose limited Candida utilis. Journal of General Microbiology 128, 1635–8.

    CAS  Google Scholar 

  • Scott, R. 1983. Design and evaluation of experiments to provide scale-up information for the ICI single cell protein process. Proceedings International Conference on Commercial Applications and Implications of Biotechnology235–48.

    Google Scholar 

  • Seki, T., S. Myoga, S. Limtong, S. Vedono, J. Kumnvata and H. Taguchi 1983. Genetic construction of yeast strains for higher ethanol production. Biotechnology Letters 5(5), 351–6.

    Article  CAS  Google Scholar 

  • Sittig, W. 1982. The present state of fermentation reactions. Journal of Chemical and Technical Biotechnology 32, 47–58.

    Article  Google Scholar 

  • Stewart, G. G. 1981. The genetic manipulation of industrial yeast strains. Canadian Journal of Microbiology 27, 973–90.

    Article  CAS  Google Scholar 

  • Stewart, G. G., I. Russell and J. Panchal 1982. The genetics of alcohol metabolism in yeast. Brewing and Distilling International 12(1), 23–36.

    Google Scholar 

  • Tannenbaum, S. 1968. Factors in the processing of single cell protein. In Single cell protein, R. I. Mateles and S. R. Tannenbaum (eds), 343–52. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Yamada, K. 1977. Biotechnology report: recent advances in industrial fermentation in Japan. Biotechnology and Bioengineering 19, 1563–621.

    Article  CAS  Google Scholar 

  • Yoshida, F. 1982. Aeration and mixing fermentation. Annual Reports on Fermentation Processes 5, 1–34.

    CAS  Google Scholar 

  • Zanetti, R. 1984. Breathing new life into single-cell protein. Chemical Engineer 91, 18–21.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. R. Berry, G. G. Stewart and I. Russell

About this chapter

Cite this chapter

Barford, J.P. (1987). The technology of aerobic yeast growth. In: Berry, D.R., Russell, I., Stewart, G.G. (eds) Yeast Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3119-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3119-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7903-7

  • Online ISBN: 978-94-009-3119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics