Skip to main content

The isolation and purification of protein and peptide products

  • Chapter
Yeast Biotechnology

Abstract

Downstream processing is a very significant factor in the economics of any product from fermentation, and is especially important in the production of proteins and peptides. These products are often delicate enzymes which nevertheless require extensive purification. Almost all of the bacterial enzymes of commercial importance are secreted from the cell into the growth medium, but most enzymes located inside the cell are not secreted. The study of protein secretion in Saccharomyces cerevisiae has focused, until recently, primarily on invertase and acid phosphatase, which are secreted into the periplasmic space, hence facilitating their subsequent isolation and purification. Secretion of the important new genetically-engineered proteins from the yeast cell would obviously be desirable, to simplify their subsequent purification. Some progress has been made in this direction (see Section 14.7). It is not yet known whether all such proteins and peptides will be able to be secreted, and the rate of secretion may be too slow. Also, although the secreted product would be contaminated with fewer other proteins (in the medium), in some cases secretion may not be desirable. Secretion can introduce the need for a substantial concentration step to reduce processing volumes to those which can be used for intracellular proteins (probably by ultrafiltration or by a selective binding method). In addition, proteases are often excreted which could cause product loss, and the environment in the fermenter may itself cause denaturation of secreted proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Shahwani, M. F., E. A. Berry and D. R. Berry 1978. Growth conditions inducing spontaneous cell rupture in Saccharomyces cerevisiae. Transactions of the British Mycology Society 70, 257–63.

    Google Scholar 

  • Al-Shahwani, M. F., E. A. Berry and D. R. Berry 1982. Enzymatic studies during spontaneous cell rupture of Saccharomyces cerevisiae. European Journal of Applied Microbiology and Biotechnology 15, 153–5.

    CAS  Google Scholar 

  • Assenjo, J. and P. Dunnill 1981. The isolation of lytic enzymes from Cytophaga and their application to the rupture of yeast cells. Biotechnology and Bioengineering 23, 1045–56.

    Google Scholar 

  • Assenjo, J., P. Dunnill and M. D. Lilly 1981. Production of yeast-lytic enzymes by Cytophaga species in batch culture. Biotechnology and Bioengineering 23, 97–109.

    Google Scholar 

  • Atkinson, B. and F. Mavituna 1983. Product recovery processes and unit operations. In Biochemical engineering and biotechnology handbook, 934–68. London: Macmillan.

    Google Scholar 

  • Azari, M. R. and A. Wiseman 1982. Purification and characterisation of the cytochrome P-448 component of a benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Analytical Biochemistry 122, 129–38.

    CAS  Google Scholar 

  • Böhme, H. J., G. Kopperschulager, J. Schulz and E. Hofmann 1982. Affinity chromatography of phosphofructokinase using Cibacron blue F3G-A. Journal of Chromatography 69, 209–14.

    Google Scholar 

  • Bostian, K. A. and G. F. Betts 1978. Rapid purification and properties of potassium- activated aldehyde dehydrogenase from Saccharomyces cerevisiae. Biochemical Journal 173, 773–86.

    CAS  Google Scholar 

  • Boudrant, J., J. De Angelo, A. J. Sinsleey and S. R. Tannenbaum 1979. Process characteristics of cell lysis mutants of Saccharomyces cerevisiae. Biotechnology and Bioengineering 21, 659–70.

    CAS  Google Scholar 

  • Brake, A. J., J. P. Merryweather, D. G. Coit, U. A. Heberlein, F. R. Masiarz, G. T. Mullenbach, M. S. Urdea, P. Valenzuela and P. J. Barr 1984. a-Factor- directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA 81, 4642–6.

    Google Scholar 

  • Brookman, J. S. G. 1975. Further studies on the mechanism of cell disruption by extreme pressure extrusion. Biotechnology and Bioengineering 17, 465–79.

    CAS  Google Scholar 

  • Brookman, J. S. G. and M. Davis 1973. An extreme pressure pump for continuous cell disintegration. Biotechnology and Bioengineering 15, 693–705.

    Google Scholar 

  • Bucke, C. 1983. The biotechnology of enzyme isolation and purification. In Principles of biotechnology, Bucke, C (ed.), 151–71. Surrey University Press.

    Google Scholar 

  • Charm, S. E. and C. C. Matteo 1971. Scale-up of protein isolation. In Methods in enzymology, S. P. Colowick and N. O. Kaplan (eds), Vol. 22, 476–556. New York: Academic Press.

    Google Scholar 

  • Ciejek, E., J. Thorner and M. Geier 1977. Solid phase peptide synthesis of a-factor, a yeast making pheromone. Biochemical and Biophysical Research Communications 78, 952–61.

    CAS  Google Scholar 

  • Craveri, R., C. Colia and V. Cavazzoni 1976. Lysis with enzyme complexes from Cytophaga bacterium assigned to Society Italiana Resine Spa Italy. US Patent 3997367.

    Google Scholar 

  • Currie, J. A., P. Dunnill and M. D. Lilly 1972. Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial agitator mill. Biotechnology and Bioengineering 14, 725–36.

    CAS  Google Scholar 

  • Darbyshire, J. 1981. Large scale enzyme extraction and recovery. In Topics in enzyme and fermentation biotechnology, A. Wiseman (ed.), Vol. 5, 147–86. Chichester: Ellis Horwood.

    Google Scholar 

  • Derynck, R., A. Singh and D. V. Goeddel 1983. Expression of the human interferon-y cDNA in yeast. Nucleic Acids Research 11, 1819–37.

    CAS  Google Scholar 

  • Deters, D., U. Muller and H. Homberger 1976. Breakage of yeast cells: large scale isolation of yeast mitochondria with a continuous-flow disintegration. Analytical Biochemistry 70, 263–7.

    CAS  Google Scholar 

  • Diezel, W., H.-J. Bohme, K. Nissler, R. Freyer, W. Heilmann, G. Kopperschlager and E. Hofmann 1973. A new purification procedure for yeast phosphofructokinase minimizing proteolytic degradation. European Journal of Biochemistry 38, 479–88.

    CAS  Google Scholar 

  • Doulah, M. S. 1978. Application of the statistical theory of reliability to yeast cell disintegration in ultrasonic cavitation. Biotechnology and Bioengineering 20, 1287–9.

    Google Scholar 

  • Doulah, M. S., T. H. Hammond and J. S. G. Brookman 1975. A hydrodynamic mechanism for the disintegration of Saccharomyces cerevisiae in an industrial homogenizer. Biotechnology and Bioengineering 17, 845–58.

    Google Scholar 

  • Dunnill, P. 1983. Trends in downstream processing of proteins and enzymes. Process Biochemistry 18 (October), 9–13.

    Google Scholar 

  • Dunnill, P. and M. D. Lilly 1972. Continuous enzyme isolation. In Enzyme engineering, biotechnology and bioengineering symposium No. 3, 97–113.

    Google Scholar 

  • Easterday, R. L. and J. M. Easterday 1974. Affinity chromatography of kinases and dehydrogenases on Sephadex and Sepharose dye derivatives. Advances in Experimental Medicine and Biology 42, 123–33.

    CAS  Google Scholar 

  • Edebo, L. 1969. Disintegration of cells. In Fermentation advances, D. Perlman (ed.), 249–71. New York: Academic Press.

    Google Scholar 

  • Edmond, E. and A. G. Ogston 1968. An approach to the study separation in ternary systems. Biochemical Journal 109, 569–76.

    CAS  Google Scholar 

  • Edwards, D. G. and A. Wiseman 1971. Shock tube for disrupting baker’s yeast. Process Biochemistry 32, 32–4.

    Google Scholar 

  • Eisenstein, E., J. C. Osborne, I. M. Chaiken and P. Hensley 1984. Purification and characterisation of ornithine transcarbamylase from Saccharomyces cerevisiae. Journal of Biological Chemistry 259, 5139–45.

    CAS  Google Scholar 

  • Engler, C. R. and C. W. Robinson 1979. New method for measuring cell-wall disruption. Biotechnology and Bioengineering 21, 1861–9.

    CAS  Google Scholar 

  • Engler, C. R. and C. W. Robinson 1981. Disruption of Candida utilis cells in high pressure flow devices. Biotechnology and Bioengineering 23, 765–80.

    Google Scholar 

  • Esders, T. W., J. R. Schaeffer and H. W. Harris 1977. Assigned to Eastman Kodak Company. Cholesterol esterase from Candida rugosa. US Patent 4042 461.

    Google Scholar 

  • Fenton, D. M. 1982. Solvent treatment for /3-galactosidase release from yeast cells. Enzyme and Microbial Technology 4, 229–32.

    CAS  Google Scholar 

  • Follows, M., P. J. Hetherington, P. Dunnill and M. D. Lilly 1971. Release of enzymes from baker’s yeast by disruption in an industrial homogenizer. Biotechnology and Bioengineering 13, 549–60.

    CAS  Google Scholar 

  • Gallili, G. E. 1975. Synthesis of small and large invertases and the yeast cell cycle. PhD Thesis, Rutgers University, New Jersey, USA.

    Google Scholar 

  • Gierhart, D. L. and N. N. Potter 1979. Effects of ribonucleic acid removal methods on proteolytic activity and protein solubility in Candida utilis. Biotechnology and Bioengineering 21, 1963–80.

    CAS  Google Scholar 

  • Goff, C. G., D. T. Moir, T. Kohno, T. C. Gravius, R. A. Smith, E. Yamasaki and A. Taunton-Rigby 1984. Expression of calf prochymosin in Saccharomyces cerevisiae. Gene 27, 35–46.

    CAS  Google Scholar 

  • Goldstein, I. J., C. M. Reichert and A. Misaki 1974. Interaction of concanavalin A with model substrates. Annals of the New York Academy of Sciences 234, 283–96.

    CAS  Google Scholar 

  • Hagele, E., J. Neeff and D. Mecke 1978. The malate dehydrogenase isoenzymes of Saccharomyces cerevisiae. European Journal of Biochemistry 83, 67–76.

    CAS  Google Scholar 

  • Hall, L. M. 1978. Assigned to The Board of Trustees at the University of Alabama. Maltase from Saccharomyces. US Patent 4071 407.

    Google Scholar 

  • Hasko, F., R. Vaszileva and L. Halasz 1982. Solubility of plasma proteins in the presence of poly(ethylene glycol). Biotechnology and Bioengineering 24, 1931–9.

    CAS  Google Scholar 

  • Hetherington, P. J., M. Follows, P. Dunnill and M. D. Lilly 1971. Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogenizer. Transactions of the Institute of Chemical Engineers 49, 142–8.

    CAS  Google Scholar 

  • Hitzeman, R. A., F. E. Hagie, H. L. Levine, D. V. Goeddel, G. Ammerer and B. D. Hall 1981. Expression of a human gene for interferon in yeast. Nature (London) 293, 717–22.

    CAS  Google Scholar 

  • Hitzeman, R. A., D. W. Leung, J. Perry, W. J. Kohr, H. L. Levine and D. V. Goeddel 1983. Secretion of human interferons by yeast. Science 219, 620–5.

    CAS  Google Scholar 

  • Hughes, D. E., J. W. T. Wimpenny and D. Lloyd 1971. The disintegration of micro-organisms. In Methods in microbiology, Vol. 5B, J. R. Norris and D. W. Ribbons (eds), 1 - 54. London: Academic Press.

    Google Scholar 

  • Jakoby, W. B. 1984. Enzyme purification and related techniques. In Methods in enzymology, Vol. 104, S. P. Colowick and N. O. Kaplan (eds). New York: Academic Press.

    Google Scholar 

  • James, C. J., W. T. Coakley and D. E. Hughes 1972. Kinetics of protein release from yeast sonicated in batch and flow systems at 20 kHz. Biotechnology and Bioengineering 14, 33–42.

    CAS  Google Scholar 

  • Janson, J. C. 1984. Large scale affinity purification - state of the art and future prospects. Trends in Biotechnology 2, 31–8.

    CAS  Google Scholar 

  • Johansen, J. T. 1982. Assigned to De Forenede Bryggerier A/S Denmark. Superoxide dismutase recovered from yeast. US Patent 4340675.

    Google Scholar 

  • Juckes, I. R. M. 1971. Fractionation of proteins and viruses with poly(ethylene glycol). Biochimica et Biophysica Acta 229, 535–46.

    CAS  Google Scholar 

  • Julius, D., L. Blair, A. Brake, G. Sprague and J. Thorner 1983. Yeast a factor is processed from a larger precursor polypeptide: the essential role of a membrane- bound dipeptidyl aminopeptidase. Cell 32, 839–52.

    CAS  Google Scholar 

  • Kappeli, O., M. Sauer and A. Fiechter 1982. Convenient procedure for the isolation of highly enriched cytochrome P-450 containing fraction from Candida tropicalis. Analytical Biochemistry 126, 179–82.

    CAS  Google Scholar 

  • Kawai, M. and N. Mukai 1972. Assigned to Kyowa Hakko Kogyo Co. Ltd, Japan. Production of cell lytic enzymes from Coprinus strains. US Patent 3 682 778.

    Google Scholar 

  • Kelly, P. J. and B. J. Catley 1976. A purification of trehalase from Saccharomyces cerevisiae. Analytical Biochemistry 72, 353–8.

    CAS  Google Scholar 

  • King, D. J., M. R. Azari and A. Wiseman 1984. Studies on the properties of highly purified cytochrome P-448 and its dependent activity benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Xenobiotica 14, 187–206.

    CAS  Google Scholar 

  • Knoll, D. and J. Hermans 1983. Polymer-protein interactions. Journal of Biological Chemistry 258a, 5710–15.

    CAS  Google Scholar 

  • Knorr, D., K. Shetty and J. Kinsella 1979. Enzymatic lysis of yeast cell walls. Biotechnology and Bioengineering 21, 2011–21.

    CAS  Google Scholar 

  • Kobayashi, R., T. Miwa, S. Yamamoto and S. Nagasaki 1982. Preparation and evaluation of an enzyme which degrades yeast cell walls. European Journal of Applied Microbiology and Biotechnology 15, 14–19.

    CAS  Google Scholar 

  • Kopperschlager, G. and G. Johansson 1982. Affinity partitioning with polymer-bound Cibacron blue F3G-A for rapid, large-scale purification of phosphofructokinase from baker’s yeast. Analytical Biochemistry 124, 117–24.

    CAS  Google Scholar 

  • Kopperschlager, G., H.-J. Bohme and E. Hofman 1982. Cibacron blue F3G-A and related dyes as ligands in affinity chromatography. Advances in Biochemical Engineering 25, 101–38.

    Google Scholar 

  • Kopetzki, E. and K.-D. Entian 1982. Purification of yeast hexokinase isoenzymes using affinity chromatography and chromatofocusing. Analytical Biochemistry 121, 181–5.

    CAS  Google Scholar 

  • Kulbe, K. D. and R. Schuer 1979. Large scale preparation of phosphoglycerate kinase from Saccharomyces cerevisiae using Cibacron Blue-Sepharose 4B pseudoaffinity chromatography. Analytical Biochemistry 93, 46–51.

    CAS  Google Scholar 

  • Lampen, J. O. 1971. Yeast and Neurospora invertases. In The enzymes, 3rd edn, P. D. Boyer (ed.), Vol. 5, 291–305. New York and London: Academic Press.

    Google Scholar 

  • Laurent, T. C. 1963. The interaction between polysaccharides and other macro- molecules. Biochemical Journal 89, 253–7.

    CAS  Google Scholar 

  • Lawford, G. R., A. Kligerman and T. Williams 1979. Production of high-quality edible protein from Candida yeast grown in continuous culture. Biotechnology and Bioengineering 21, 1163–74.

    CAS  Google Scholar 

  • Lee, C.-H., S. K. Tsang, R. Urakabe and C. K. Rha 1979. Disintegration of dried yeast cells and its effect on protein extractability, sedimentation property and viscosity of the cell suspension. Biotechnology and Bioengineering 21, 1–17.

    CAS  Google Scholar 

  • Lilly, M. D. and P. Dunnill 1972. Engineering aspects of enzyme reactors. Biotechnology and Bioengineering Symposium No. 3, 221–7. New York: Wiley.

    Google Scholar 

  • Limon-Lason, J., M. Hoare, C. B. Orsborn, D. J. Doyle and P. Dunnill 1979. Reactor properties of a high-speed bead mill for microbial cell rupture. Biotechnology and Bioengineering 21, 745–74.

    Google Scholar 

  • Lowe, C. R. and J. C. Pearson 1984. Affinity chromatography on immobilized dyes. In Methods in enzymology, W. B. Jakoby (ed.), Vol. 104, 97–113. New York: Academic Press.

    Google Scholar 

  • Machek, F., F. Stros, A. Prokop and L. Adamek 1976. Production and isolation of protein from synthetic ethanol. In Continuous culture 6: Applications and new fields, A. C. R. Dean, D. C. Ellwood, C. G. T. Evans and J. Melling (eds), 135–45. Chichester: Ellis Horwood/SCI.

    Google Scholar 

  • Magnusson, K.-E. and L. Edebo 1974. Estimation of the disruption in freeze-pressed Saccharomyces cerevisiae by an electronic particle counter. Biotechnology and Bioengineering 16, 1273–82.

    CAS  Google Scholar 

  • Magnusson, K. E. and L. Edebo 1976a. Influence of salts and gelatin on disintegration of Saccharomyces cerevisiae by freeze-pressing. Biotechnology and Bioengineering 18, 449–63.

    CAS  Google Scholar 

  • Magnusson, K. E. and L. Edebo 1976b. Influence of cell concentration, temperature and press performance on flow characteristics and disintegration in the freeze- pressing of Saccharomyces cerevisiae with the X-press. Biotechnology and Bioengineering 18, 865–83.

    CAS  Google Scholar 

  • Magnusson, K. E. and L. Edebo 1976c. Large-scale disintegration of micro-organisms by freeze-pressing. Biotechnology and Bioengineering 18, 975–86.

    CAS  Google Scholar 

  • Maitra, P. K. 1970. A glucokinase from Saccharomyces cerevisiae. Journal of Biological Chemistry 245, 2423–31.

    CAS  Google Scholar 

  • Marffy, F. and M.-R. Kula 1974. Enzyme yields from cells of brewer’s yeast disrupted by treatment in a horizontal disintegrator. Biotechnology and Bioengineering 16, 623–34.

    CAS  Google Scholar 

  • Mason, T. L., R. O. Poynton, D. C. Wharton and G. Schatz 1973. Cytochrome C oxidase from baker’s yeast. Journal of Biological Chemistry 246, 1346–54.

    Google Scholar 

  • Melling, J. and B. W. Phillips 1975a. Large-scale extraction and purification of enzymes. In Handbook of enzyme biotechnology, A. Wiseman (ed.), Part 1, 58–88. Chichester: Ellis Horwood.

    Google Scholar 

  • Melling, J. and B. W. Phillips 1975b. Practical aspects of large-scale enzyme purification. In Handbook of enzyme biotechnology, A. Wiseman (ed.), Part 2, 181–202. Chichester: Ellis Horwood.

    Google Scholar 

  • Mercereau-Puijalon, O., F. Lacroute and P. Kourilsky 1980. Synthesis of a chicken ovalbumin-like protein in the yeast Saccharomyces cerevisiae. Gene 11, 163–7.

    CAS  Google Scholar 

  • Merkel, J. R., M. Straume, S. A. Sajer and R. L. Hopfer 1982. Purification and some properties of a-glycerol-3-phosphate dehydrogenase from Saccharomyces cerevisiae. Analytical Biochemistry 122, 180–5.

    CAS  Google Scholar 

  • Miyanohara, A., A. Toh-e, C. Nozaki, F. Hamada, N. Ohtomo and K. Matsubara 1983. Expression of hepatitis B surface antigen gene in yeast. Proceedings of the National Academy of Sciences of the USA 80, 1–5.

    CAS  Google Scholar 

  • Mogren, H., M. Lindblom and G. Hedenskog 1974. Mechanical disintegration of micro-organisms in an industrial homogenizer. Biotechnology and Bioengineering 16, 261–74.

    CAS  Google Scholar 

  • Mosqueira, F. G., J. J. Higgins, P. Dunnill and M. D. Lilly 1981. Characteristics of mechanically disrupted baker’s yeast in relation to its separation in industrial centrifuges. Biotechnology and Bioengineering 23, 335–43.

    Google Scholar 

  • Needleman, R. B. and A. Tzagoloff 1975. Breakage of yeast: a method for processing multiple samples. Analytical Biochemistry 64, 545–9.

    CAS  Google Scholar 

  • Neppiras, E. A. and D. E. Hughes 1964. Some experiments on the disintegration of yeasts by high-intensity ultrasound. Biotechnology and Bioengineering 6, 247–70.

    Google Scholar 

  • Neumann, N. P. and S. O. Lampen 1967. Purification and properties of yeast invertase. Biochemistry 6, 468–75.

    CAS  Google Scholar 

  • Nikodem, V. M., R. C. Johnson and J. R. Fresco 1977. Interaction between blue dextran and aminoacyl t-RNA synthetases from baker’s yeast. Federation Proceedings 36, 822.

    Google Scholar 

  • Okagbue, R. N. and M. J. Lewis 1983. Mixed culture of Bacillus circulans WL-12 and Phaffia rhodozyma on different carbon sources: yeast wall lytic enzyme production and extractability of astaxanthin. Biotechnology Letters 5, 731–6.

    CAS  Google Scholar 

  • Penttila, M. E., K. M. H. Nevalainen, A. Raynal and J. K. C. Knowles 1984. Cloning of Aspergillus niger genes in yeast. Expression of the gene coding Aspergillus β-glucosidase. Molecular and General Genetics 194, 494–9.

    CAS  Google Scholar 

  • Poison, A., G. M. Potgeiter, J. F. Largier, G. R. F. Mears and F. J. Joubert 1964. The fractionation of protein mixtures using linear polymers of high molecular weight. Biochimica et Biophysica Acta 104, 463–75.

    Google Scholar 

  • Pompon, D. and F. Lederer 1978. Binding of Cibacron blue F3G-A to flavocytochrome b2 from baker’s yeast. European Journal of Biochemistry 90, 563–9.

    CAS  Google Scholar 

  • Rehacek, J. and J. Schaefer 1977. Disintegration of micro-organisms in an industrial horizontal mill of novel design. Biotechnology and Bioengineering 19, 1523–34.

    Google Scholar 

  • Rehacek, J., K. Beran and V. Bicik 1969. Disintegration of micro-organisms and preparation of yeast cell walls in a new type of disintegrator. Applied Microbiology 17, 462–6.

    CAS  Google Scholar 

  • Reyes, P. and R. B. Sandquist 1978. Purification of orotate phosphoribosyltransferase and orotidylate decarboxylase by affinity chromatography on Sepharose dye derivatives. Analytical Biochemistry 88, 522–31.

    CAS  Google Scholar 

  • Roschlau, P. and B. Hess 1972. Affinity chromatography of yeast pyruvate kinase with Cibacronblau bound to Sephadex G-200. Hoppe-Seyler’s Zeitschrift fiXr Physio- logische Chemie 353, 441–3.

    CAS  Google Scholar 

  • Rothstein, S. J., C. M. Lazarus, W. E. Smith, D. C. Baulcombe and A. A. Gatenby 1984. Secretion of a wheat a-amylase expressed in yeast. Nature (London) 308, 662–5.

    CAS  Google Scholar 

  • Sadler, A. M., M. A. Winkler and A. Wiseman 1983. Recovery of cytochrome P-450 from Saccharomyces cerevisiae using poly (ethylene glycol) precipitation. Biochemical Society Transactions 11, 402.

    CAS  Google Scholar 

  • Sadler, A. M., M. A. Winkler and A. Wiseman 1985. Recovery of microsomal cytochrome P-450 from yeast using low-speed centrifugation. Chemical Engineering Journal 30, 1343–9.

    Google Scholar 

  • Scawen, M. and J. Melling 1985. Large-scale extraction and purification of enzymes. In Handbook of enzyme biotechnology, 2nd edn, A. Wiseman (ed.), 15–53, 247–73. Chichester: Ellis Horwood.

    Google Scholar 

  • Scawen, M. D., A. Atkinson and J. Darbyshire 1980. In Applied protein chemistry, R. A. Grant (ed.), 281–324. London: Applied Science Publishers.

    Google Scholar 

  • Schütte, H., J. Flossdorf, H. Sahm and M.-R. Kula 1976. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. European Journal of Biochemistry 62, 151–60.

    Google Scholar 

  • Scopes, R. K., K. Griffiths-Smith and D. G. Millar 1981. Rapid purification of yeast alcohol dehydrogenase. Analytical Biochemistry 118, 284–5.

    CAS  Google Scholar 

  • Scully, D. B. 1975. Cell disintegration by rapid decompression. Biotechnology and Bioengineering 17, 1545–50.

    CAS  Google Scholar 

  • Shaltiel, S. 1984. Hydrophobic chromatography. In Methods in enzymology, W. B. Jakoby (ed.), Vol. 104, 69–96. New York: Academic Press.

    Google Scholar 

  • Shetty, K. J. and J. E. Kinsella 1978. Effect of thiol reagents on extractability of protein from yeast. Biotechnology and Bioengineering 20, 755–66.

    CAS  Google Scholar 

  • Shetty, J. K., R. C. Weaver and J. E. Kinsella 1980. A rapid method for the isolation of ribonuclease from yeast Saccharomyces carlsbergensis. Biochemical Journal 189, 363–6.

    CAS  Google Scholar 

  • Suekane, M. and C. Satake 1972. Assigned to C.P.C. International Inc., Japan. Lysis of yeast with Bacillus or Thermoactinomyces enzymes. US Patent 3 681 195.

    Google Scholar 

  • Tamaki, N. and B. Hess 1975. Purification and properties of phosphofructokinase (EC 2.1.11) of Saccharomyces cerevisiae. Hoppe-Seylers Zeitschrift fur Physiologische Chemie 356, 399–415.

    CAS  Google Scholar 

  • Tamaki, N., M. Nakamura, K. Kimura and T. Hama 1977. Purification and properties of aldehyde dehydrogenase from Saccharomyces cerevisiae. Journal of Biochemistry 82, 73–9.

    CAS  Google Scholar 

  • Trimble, R. B. and F. Maley 1977. Subunit structure of external invertase from Saccharomyces cerevisiae. Journal of Biological Chemistry 252, 4409–12.

    CAS  Google Scholar 

  • Wang, D. I. C., C. L. Cooney, A. L. Demain, P. Dunnill, A. E. Humphrey and M. D. Lilly 1979. In Fermentation and enzyme technology, Chapter 12. New York: Wiley.

    Google Scholar 

  • Watson, D. H., M. J. Harvey and P. D. G. Dean 1978. The selective retardation of NADP+-dependent dehydrogenases by immobilized procion red HE-3B. Biochemical Journal 173, 591–6.

    CAS  Google Scholar 

  • Welch, P. and R. K. Scopes 1981. Rapid purification and crystallization of yeast phosphofructokinase. Analytical Biochemistry 112, 154–7.

    CAS  Google Scholar 

  • Whitworth, D. A. 1974. Hydrocarbon fermentation: protein and enzyme solubilization from Candida lipolytica using an industrial homogenizer. Biotechnology and Bio- engineering 16, 1399–406.

    CAS  Google Scholar 

  • Wilchek, M., T. Miron and J. Kohn 1984. Affinity chromatography. In Methods in enzymology, W. B. Jakoby (ed.), Vol. 104, 3–55. New York: Academic Press.

    Google Scholar 

  • Williams, N. J. and A. Wiseman 1973. Ease of invertase (β-fructofuranosidase) solubilization in disruption of brewer’s yeast by Vibro Mill. Biochemical Society Transactions 1, 1299–301.

    Google Scholar 

  • Winkler, M. A. 1983. Application of the principles of fermentation engineering to biotechnology. In Principles of biotechnology, Winkler, M. A (ed.), 94–143. Surrey University Press.

    Google Scholar 

  • Winkler, M. A. and A. Wiseman 1984. Polyethylene glycol precipitation of microsomal enzymes. Paper presented at SCI Meeting on Discovery and Isolation of Microbial Products, SCI London, 23 October.

    Google Scholar 

  • Winkler, M. A., A. Wiseman and A. M. Sadler 1985. Poly(ethylene glycol) precipitation of a microsomal enzyme. In Discovery and isolation of microbial products, Winkler, M. A., A. Wiseman and A. M. Sadler (ed.), 84–97. SCI/Horwood.

    Google Scholar 

  • Wiseman, A. 1969. Enzymes for breakage of micro-organisms. Process Biochemistry 4 (5), 63–5.

    CAS  Google Scholar 

  • Wiseman, A. 1978. Stabilization of enzymes. In Topics in enzyme and fermentation biotechnology, A. Wiseman (ed.), Vol. 2, 280–303. Chichester: Ellis Horwood.

    Google Scholar 

  • Wiseman, A. and P. R. Jones 1971. Assay increment and solubilization of a-glucosidase and invertase in disruption of brewer’s yeast. Journal of Applied Chemistry and Biotechnology 21, 26–8.

    CAS  Google Scholar 

  • Wiseman, A., P. H. Leslie and G. C. Granville 1973. Ultrasonic inactivation of yeast alcohol dehydrogenase: protection by oxidized nicotinamide-adenine dinucleotide. Biochemical Society Transactions 1, 606–8.

    CAS  Google Scholar 

  • Zhu, X.-L., C. Ward and A. Weissbach 1984. Control of Herpes simplex, virus thymidine kinase gene expression in Saccharomyces cerevisiae by a yeast promoter sequence. Molecular and General Genetics 194, 31–41.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. R. Berry, G. G. Stewart and I. Russell

About this chapter

Cite this chapter

Wiseman, A., King, D.J., Winkler, M.A. (1987). The isolation and purification of protein and peptide products. In: Berry, D.R., Russell, I., Stewart, G.G. (eds) Yeast Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3119-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3119-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7903-7

  • Online ISBN: 978-94-009-3119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics