Skip to main content

Hydrolytic enzymes

  • Chapter
Yeast Biotechnology

Abstract

This chapter is concerned with a specific class of yeast products, hydrolytic enzymes, that are useful in analytical and industrial applications. The selection of subjects, and the depth of coverage, are based primarily on utility, but other hydrolases are included either for anticipated commercial value or as instructive examples of cell biology. Recent developments in biochemistry and genetics help to place the field on more than an empirical ground. Further developments will follow as a result of fundamental studies on species that have emerged from surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-El-Al, A. T. V. and H. J. Phaff 1968. Exo-β-glucanases in yeast. Biochemical Journal 109, 347–60.

    CAS  Google Scholar 

  • Abd-El-Al, A. T. V. and H. J. Phaff 1969. Purification and properties of endo β-glucanase in the yeast Hanseniaspora valbyensis. Canadian Journal of Microbiology 15, 697–701.

    CAS  Google Scholar 

  • Abdullah, M., B. J. Catley, E. Y. C. Lee, J. Robyt, K. Wallenfels and W. J. Whelan 1966. The mechanism of carbohydrase action. XI. Pullulanase, an enzyme specific for hydrolysis of α-l,6-bonds in amylaceous oligo- and polysaccharides. Cereal Chemistry 43, 111–18.

    CAS  Google Scholar 

  • Ahearn, D. G., S. P. Meyers and R. A. Nichols 1968. Extracellular proteinases of yeasts and yeastlike fungi. Applied Microbiology 16, 1370–4.

    CAS  Google Scholar 

  • Alonso, A. and A. Kotyk 1978. Apparent half-lives of sugar transport proteins in Saccharomyces cerevisiae. Folia Microbiologia 23, 118–25.

    CAS  Google Scholar 

  • Andrews, J. and R. B. Gilliland 1952. Superattenuation of beer: a study of three organisms capable of causing abnormal attenuations. Journal of the Institute of Brewing 58, 189–96.

    CAS  Google Scholar 

  • Arima, K., T. Oshima, I. Kubota, N. Nakamura, T. Mizunaga and A. Tohe 1983. The nucleotide sequence of the yeast PHO 5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Research 11, 1657–72.

    CAS  Google Scholar 

  • Arnold, W. N. 1969a. Heat inactivation kinetics of yeast β-fructofuranosidase. A polydisperse system. Biochimica et Biophysica Acta 178, 347–53.

    CAS  Google Scholar 

  • Arnold, W. N. 1969b. Chromatography of a polydisperse enzyme, yeast β-fruc-tofuranosidase on DEAE-cellulose. Anal. Letters 2, 547–52.

    CAS  Google Scholar 

  • Arnold, W. N. 1972a. Location of acid phosphatase and β-fructofuranosidase within yeast cell envelopes. Journal of Bacteriology 112, 1346–52.

    CAS  Google Scholar 

  • Arnold, W. N. 1972b. The structure of the yeast cell wall. Solubilization of a marker enzyme, β-fructofuranosidase, by the autolytic enzyme system. Journal of Biological Chemistry 247, 1161–9.

    CAS  Google Scholar 

  • Arnold, W. N. 1979. Trehalose assimilation and turnover by Torulopsis glabrata. Current Microbiology 2, 109–12.

    CAS  Google Scholar 

  • Arnold, W. N. 1981a. Enzymes. In Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, W. N. Arnold (ed.), Vol. II, Chapter 1, pp. 1–46. Boca Raton: CRC Press.

    Google Scholar 

  • Arnold, W. N. 1981b. Autolysis. In Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, W. N. Arnold (ed.), Vol. II, Chapter 7, 129–37. Boca Raton: CRC Press.

    Google Scholar 

  • Arnold, W. N. 1981c. Protoplasts. In Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, W. N. Arnold (ed.), Vol. II, Chapter 5, 93–103. Boca Raton: CRC Press.

    Google Scholar 

  • Arnold, W. N. 1982. The cryptic β-fructofuranosidase of Saccharomyces rouxii. Molecular and Cellular Biochemistry 45, 59–64.

    CAS  Google Scholar 

  • Arnold, W. N. and R. G. Garrison 1979. An Fe-activated acid phosphatase from Saccharomyces rouxii. Journal of Biological Chemistry 254, 4919–24.

    CAS  Google Scholar 

  • Arnold, W. N. and R. G. Garrison 1981. Kinetic limitations on the trapping of nascent phosphate for cytochemical localization of yeast acid phosphatase. Current Microbiology 5, 57–60.

    CAS  Google Scholar 

  • Arnold, W. N. and J. S. Lacy 1977. Permeability of the cell envelope and osmotic behavior in Saccharomyces cerevisiae. Journal of Bacteriology 131, 564–71.

    CAS  Google Scholar 

  • Arnold, W. N. and M. N. McLellan 1975. Trehalose and glycogen levels during the initial stages of growth of Candida albicans. Physiological Chemistry and Physics 7, 369–80.

    CAS  Google Scholar 

  • Augustin, J., J. Zemek, A. Kockova-Kratochvilova and L. Kuniak 1978. Production of a-amylase by yeasts and yeast-like organisms. Folia Microbiologia 23, 353–61.

    CAS  Google Scholar 

  • Augustin, J., J. Zemek, L. Kuniak and A. Kockova-Kratochvilova 1980. Mannan hydrolyzing enzymes of yeasts and yeastlike organisms. Folia Microbiologia 25, 301–5.

    CAS  Google Scholar 

  • Augustin, J., J. Zemek, O. Fassatiova and L. Kuniak 1981. Production of α-amylase by microscopic fungi. Folia Microbiologia 26, 142–6.

    CAS  Google Scholar 

  • Bacon, J. S. D. 1981. Nature and disposition of polysaccharides within the cell envelope. In Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, W. N. Arnold (ed.), Vol. I, Chapter 5, 65 - 84. Boca Raton: CRC Press.

    Google Scholar 

  • Ballou, C. E. and W. C. Raschke 1974. Polymorphism of the somatic antigen of yeast. Science 184, 127–34.

    CAS  Google Scholar 

  • Barrett-Bee, K. J., J. Lees and W. Henderson 1982. Variation in the activities of enzymes associated with cell wall metabolism during a growth cycle of Candida albicans. FEMS Microbiological Letters 15, 275–8.

    CAS  Google Scholar 

  • Beever, R. E. and D. J. W. Burns 1981. Phosphorus uptake, storage and utilization by fungi. In Advances in botanical research, K. W. Woolhouse (ed.), Vol. 8, 127–219. London: Academic Press.

    Google Scholar 

  • Bender, H., J. Lehmannand K. Wallenfells 1959. Pullulan, an extracellularglucan from Pullularia pullulans. Biochimica et Biophysica Acta 36, 309–16.

    CAS  Google Scholar 

  • Bhanot, P. and R. G. Brown 1980. Effect of 3-O-methyl-D-glucose on the production of glycosidases by Cryptococcus laurentii and Saccharomyces cerevisiae. Canadian Journal of Microbiology 26, 1289–95.

    CAS  Google Scholar 

  • Biely, P. and F. Petrakova 1984. Novel inducers of the xylan-degrading enzyme system of Cryptococcus albidus. Journal of Bacteriology 160, 408–12.

    CAS  Google Scholar 

  • Biermann, L. and M. D. Glantz 1968. Isolation and characterization of β-galactosidase from Saccharomyces lactis. Biochimica et Biophysica Acta 167, 373–7.

    CAS  Google Scholar 

  • Blobel, G. and B. Dobberstein 1975. Transfer of proteins across membranes. 1. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane bound ribosomes of murine myeloma. Journal of Cell Biology 67, 835–51.

    CAS  Google Scholar 

  • Boer, P. and E. P. Steyn-Parve 1966. Isolation and purification of an acid phosphatase from baker’s yeast (Saccharomyces cerevisiae). Biochimica et Biophysica Acta 128, 400–2.

    CAS  Google Scholar 

  • Bostian, K. A., J. M. Lemire and H. O. Halvorson 1983. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae. Molecular and Cellular Biology 3, 839–53.

    CAS  Google Scholar 

  • Caputto, R., L. F. Leloir and R. E. Trucco 1948. Lactase and lactose fermentation in Saccharomyces fragilis. Enzymologia 12, 350–5.

    CAS  Google Scholar 

  • Carlson, M. and D. Botstein 1982. Two differentially regulated mRNA’s with different 5’ ends encode secreted and cytoplasmic forms of yeast invertase. Cell 28, 145–54.

    CAS  Google Scholar 

  • Carlson, M. and D. Botstein 1983. Organization of the SUC gene family in Saccharomyces. Molecular and Cellular Biology 3, 351–9.

    CAS  Google Scholar 

  • Carlson, M., R. Taussig, S. Kustu and D. Botstein 1983. The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence. Molecular and Cellular Biology 3, 351–9.

    CAS  Google Scholar 

  • Cartledge, T. G. and D. Lloyd 1972. Subcellular fractionation of particles containing acid hydrolases from Saccharomyces carlsbergensis. Biochemical Journal 126, 755–7.

    CAS  Google Scholar 

  • Cawley, T. N., M. G. Harrington and R. Letters 1972. A study of the phosphate linkages in the phosphomannan in the cell walls of Saccharomyces cerevisiae. Biochemical Journal 129, 711–20.

    CAS  Google Scholar 

  • Church, F. C., S. P. Meyers and V. R. Srinivasen 1980. Isolation and characterization of α-galactosidase from Pichia guilliermondii. Developments in Industrial Microbiology 21, 339–48.

    CAS  Google Scholar 

  • Clementi, F., J. Rossi, L. Costamagna and J. Rossi 1980. Production of amylase(s) by Schwanniomyces castellii and Endomycopsis fibuligera. Antonie van Leeuwenhoek Journal 46, 379–405.

    Google Scholar 

  • Correa, J. U., N. Elango, I. Polacheck and E. Cabib 1982. Endochitinase, a mannan- associated enzyme from Saccharomyces cerevisiae. Journal of Biological Chemistry 257, 1392–7.

    CAS  Google Scholar 

  • de la Fuente, G. and A. Sols 1962. Transport of sugars in yeasts. II. Mechanisms of utilization of disaccharides and related glycosides. Biochimica et Biophysica Acta 56, 49–62.

    Google Scholar 

  • Dedonder, R., E. Jozon, G. Rapoport, Y. Joyeux and A. Fritsch 1963. La saccharose-levane β-D-fructofuranosyl-transferase (levane-sucrase) de Bacillus subtilis. I. Obtention de l’enzyme pur. Bulletin de la Société de Chimie Biologique 45, 477–91.

    CAS  Google Scholar 

  • DeMot, R., K. Andries and H. Verachtert 1984. Comparative study of starch degradation and amylase production by ascomycetous yeast species. Systematic and Applied Microbiology 5, 106–18.

    CAS  Google Scholar 

  • de Whalley, H. C. S. and D. Gross 1954. Determination of raffinose and kestose in plant products. Methods in Biochemical Analysis 1, 307–39.

    Google Scholar 

  • Dhawle, M. R. and W. M. Ingledew 1983. Starch hydrolysis by derepressed mutants of Schwanniomyces castellii. Biotechnology Letters 5, 185–90.

    Google Scholar 

  • Dibenedetto, G. 1972. Acid phosphatase in Schizosaccharomycespombe. I. Regulation and preliminary characterization. Biochimica et Biophysica Acta 286, 363–74.

    CAS  Google Scholar 

  • Dickson, R. C. and J. S. Markin 1980. Physiological studies of β-galactosidase induction in Kluyveromyces lactis. Journal of Bacteriology 142, 777–85.

    CAS  Google Scholar 

  • Dickson, R. C., L. R. Dickson and J. S. Markin 1979. Purification and properties of an inducible β-galactosidase isolated from the yeast Kluyveromyces lactis. Journal of Bacteriology 137, 51–61.

    CAS  Google Scholar 

  • Ebertova, H. 1966a. Amylolytic enzymes of Endomycopsis capsularis. I. Formation of the amylolytic system in cultures. Folia Microbiologica 2, 14–20.

    Google Scholar 

  • Ebertova, H. 1966b. Amylolytic enzymes of Endomycopsis capsularis. II. A study of the properties of isolated α-amylase, amyloglucosidase and maltase-transglucosidase. Folia Microbiologia 2, 422–38.

    Google Scholar 

  • Eddy, A. A. and J. Longton 1969. A large mannan molecule released from isolated yeast cell walls by the action of snail gut juice. Journal of the Institute of Brewing 75, 7–9.

    CAS  Google Scholar 

  • Elango, N., J. U. Correa and E. Cabib 1982. Secretory character of yeast chitinase. Journal of Biological Chemistry 257, 1398–400.

    CAS  Google Scholar 

  • Erratt, J. A. and G. G. Stewart 1981a. Fermentation studies using Saccharomyces diastaticus yeast strains. In Developments in industrial microbiology, L. A. Underkoffler and M. L. Wulf (eds), Vol. 22, Chapter 50, 577–87. Arlington: Society for Industrial Microbiology.

    Google Scholar 

  • Erratt, J. A. and G. G. Stewart 1981b. Genetic and biochemical studies on glucoamylases from Saccharomyces diastaticus. In Current developments in yeast research, G. G. Stewart and I. Russell (eds), 279–84. Toronto: Pergamon Press.

    Google Scholar 

  • Federici, F. 1982. Extracellular enzymatic activities in Aureobasidium pullulans. Mycologia 74, 738–43.

    CAS  Google Scholar 

  • Federici, F. and M. D’Elia 1983. Growth and amylolytic activity of Aureobasidium pullulans in starch-limited culture. Enzyme and Microbial Technology 5, 225–6.

    CAS  Google Scholar 

  • Fenton, D. M. 1982. Solvent treatment for β-galactosidase release from yeast cells. Enzyme and Microbial Technology 4, 229–32.

    CAS  Google Scholar 

  • Fischer, E. H. and D. L. Brautigan 1982. A phosphatase by any other name: from prosthetic group removing enzyme to phosphorylase phosphatase. Trends in Biochemical Sciences 7, 3–4.

    CAS  Google Scholar 

  • Florez, I. G., P. S. Lazo, A. G. Ochoa and S. Gascon 1981. The specificity of induction of α-galactosidase from Saccharomyces carlsbergensis. Biochimica et Biophysica Acta 674, 71–7.

    CAS  Google Scholar 

  • Fogarty, W. M. and C. T. Kelly 1979. Developments in microbial extracellular enzymes. In Topics in enzyme and fermentation biotechnology, A. Wiseman (ed.), Vol. 3, 12–102. Chichester: Ellis Horwood.

    Google Scholar 

  • Fosset, M., L. W. Muir, L. D. Nielsen and E. H. Fischer 1971. Purification and properties of yeast glycogen phosphorylase a and b. Biochemistry 10, 4105–13.

    CAS  Google Scholar 

  • French, D. 1954. The raffinose family of oligosaccharides. Advances in Carbohydrate Chemistry 9, 149–84.

    CAS  Google Scholar 

  • Frey, J. and K. H. Rohn 1978. Subcellular localization and levels of aminopeptidases and dipeptidases in Saccharomyces cerevisiae. Biochimica et Biophysica Acta 527, 31–41.

    CAS  Google Scholar 

  • Friis, J. and P. Ottolenghi 1960. Localization of melibiase in a strain of yeast. Compte Rendu des Travaux du Laboratoire Carlsberg 31, 272–81.

    Google Scholar 

  • Fukumoto, J., Y. Tsujisaka and M. Araki 1960. Studies on amylase of Endomycopsis. Kagakuto Kogyo (Osaka) 34, 423–7. Chemical Abstracts 55, 24917b.

    Google Scholar 

  • Garrison, R. G. and W. N. Arnold 1983. Cytochemical localization of acid phosphatase in the dimorphic fungus Sporothrix schenckii. Current Microbiology 9, 253–8.

    CAS  Google Scholar 

  • Gomez, A. and F. J. Castillo 1983. Production of biomass and β - D-galactosidase by Candida pseudotropicalis grown in continuous culture on whey. Biotechnology and Bioengineering 25, 1341–57.

    CAS  Google Scholar 

  • Gonzalez, J. B. and D. R. Berry 1982. Induction of β-galactosidase in the yeast Kluyveromyces lactis. Biotechnology Letters 4, 369–74.

    CAS  Google Scholar 

  • Gottschalk, A. 1951. α-Glucosidases. In The enzymes, J. B. Sumner and K. Myrback (eds), Vol. 1, Part 1, Chapter 15, 551–82. New York: Academic Press.

    Google Scholar 

  • Gunja, Z. H., D. J. Manners and K. Maung 1961. Studies on carbohydrate-metabolizing enzymes. 7. Yeast isoamylase. Biochemical Journal 81, 392–8.

    CAS  Google Scholar 

  • Halvorson, H. and L. Ellias 1958. The purification and properties of an α-glucosidase of Saccharomyces italicus Y-1225. Biochimica et Biophysica Acta 30, 28–40.

    CAS  Google Scholar 

  • Harada, T., A. Misaki, H. Akai, K. Yokobayashi and K. Sugimoto 1972. Characterization of Pseudomonas isoamylase by its action on amylopectin and glycogen: comparison with Aerobacter pullulanase. Biochimica et Biophysica Acta 268, 497–505.

    CAS  Google Scholar 

  • Harding, T. S. 1923. The sources of the rare sugars. IX. History of trehalose, its discovery and methods of preparation. Sugar 25, 476–8.

    CAS  Google Scholar 

  • Hattori, Y. 1961. Amylolytic enzymes produced by Endomyces species. II. Purification and general properties of amyloglucosidase. Agricultural Biology and Chemistry 25, 895–901.

    CAS  Google Scholar 

  • Hattori, Y. and I. Takeuchi 1961. Raw starch digestibility of the amylase of Endomycopsis fibuligera. Rika Gaku Kenkysusho Kokoku 37, 37–42. Chemical Abstracts 55, 26132f.

    Google Scholar 

  • Hattori, Y. and I. Takeuchi 1962. Amylases produced from Endomyces. III. Hydrolysis of starch and glucosyl carbohydrates with amyloglucosidase. Agricultural Biology and Chemistry 26, 316–22.

    CAS  Google Scholar 

  • Herai, T., Y. Watanabe, K. Kamoi, K. Sato and K. Ishibashi 1981. Chemical effect of invertase mouthwash. Nippon Shishubyo Gakkai Kaishi 23, 451–7.

    CAS  Google Scholar 

  • Heredia, C. F., Y. Yen and A. Sols 1963. Role and formation of the acid phosphatase in yeast. Biochemical and Biophysical Research Communications 10, 14–18.

    CAS  Google Scholar 

  • Herrero, P., F. Moreno and S. Gascon 1980. Role of vesicles in the transport and secretion of extracytoplasmic enzymes by yeast. Cellular and Molecular Biology 26, 485–92.

    CAS  Google Scholar 

  • Hewitt, G. M. and J. W. D. GrootWassinck 1984. Simultaneous production of inulase and lactase in batch and continuous cultures of Kluyveromyces fragilis. Enzyme and Microbial Technology 6, 263–70.

    CAS  Google Scholar 

  • Hobson, P. N., W. J. Whelan and S. Peat 1951. Enzymic synthesis and degradation of starch. XIV. R enzyme. Journal of the Chemical Society 1451–9.

    Google Scholar 

  • Holzer, H. and P. C. Neinrich 1980. Control of proteolysis. Annual Review of Biochemistry 49, 63–91.

    CAS  Google Scholar 

  • Hopkins, R. H. 1958. Amylase systems in culture and wild yeasts. Wallerstein Communications 21, 309–19.

    CAS  Google Scholar 

  • Hopkins, R. H. and D. Kulka 1957. The glucoamylase and debrancher of Saccharomyces diastaticus. Archives of Biochemistry and Biophysics 69, 45–55.

    CAS  Google Scholar 

  • Horton, D. and M. L. Wolfrom 1963. Polysaccharides. In Comprehensive biochemistry, M. Florkin and E. H. Stotz (eds), Vol. 5, Chapter Vllb, 189–232. Amsterdam: Elsevier.

    Google Scholar 

  • Janssen,F. 1964. Effect of high temperatures on the efficiency of invertase. Manufacturing Confectioner 44, 63.

    Google Scholar 

  • Jensen, R. G. 1974. Microbial lipolytic enzymes; characterization of the lipase from the mold Geotrichum candidum, a review. Lipids 9, 149–57.

    CAS  Google Scholar 

  • Kang, M. S., E. Narayanasamy, E. Mattia, J. Au-Young, P. W. Robbins and E. Cabib 1984. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. Journal of Biological Chemistry 259, 14966–72.

    CAS  Google Scholar 

  • Kaya, T., M. Shibano and T. Kutsumi 1973. Isolation and characterization of α - D-mannosidase from baker’s yeast. Journal of Biochemistry 73, 181–2.

    CAS  Google Scholar 

  • Kerr, R. W. 1950. Chemistry and industry of starch, 2nd. edn. New York: Academic Press.

    Google Scholar 

  • Kokke, R., G. J. M. Hooghwinkel, H. L. Boij, H. van den Bosch, L. Zelles, E. Milder and L. L. M. van Deenan 1963. Metabolism of lysolecithin and lecithin in a yeast suspension. Biochimica et Biophysica Acta 70, 351–4.

    CAS  Google Scholar 

  • Kotyk, H. and J. Horak 1981. Transport processes in the plasma membrane. In Yeast cell envelopes: biochemistry, biophysics and ultrastructure, W. N. Arnold (ed.), Vol. I, Chapter 4, 49–64. Boca Raton: CRC Press.

    Google Scholar 

  • Kotyk, A. and D. Michaljanicova 1979. Uptake of trehalose by Saccharomyces cerevisiae. Journal of General Microbiology 110, 323–32.

    CAS  Google Scholar 

  • Kratky, Z. and P. Biely 1980. Inducible β-xyloside permease as a constituent of the xylan-degrading enzyme system of the yeast Cryptococcus albidus. European Journal of Biochemistry 112, 367–73.

    CAS  Google Scholar 

  • Kratky, Z., P. Biely and S. Bauer 1975. Wall mannan of Saccharomyces cerevisiae. Metabolic stability and release into growth medium. Biochimica et Biophysica Acta 404, 1–6.

    CAS  Google Scholar 

  • Kreger van Rij, N. J. W. 1971. Genus 5, Endomycopsis. In The yeasts, a taxonomic study, 2nd edn, J. Lodder (ed.), 166 - 208. Amsterdam: North-Holland.

    Google Scholar 

  • Laurema, S. and J. Erkama 1968. Formation of ethyl acetate in Hansenula anomala. Acta Chemica Scandinavica 22, 14482–6.

    Google Scholar 

  • Lazo, P. S., A. G. Ochoa and S. Gascon 1977. α-Galactosidase from Saccharomyces carlsbergensis. Cellular localization and purification of the external enzyme. European Journal of Biochemistry 77, 375–82.

    CAS  Google Scholar 

  • Lazo, P. S., A. G. Ochoa and S. Gascon 1978. α-Galactosidase (melibiase) from Saccharomyces carlsbergensis. Structural and kinetic properties. Archives of Biochemistry and Biophysics 191, 316–24.

    CAS  Google Scholar 

  • Lee, E. Y. C., L. D. Nielsen and E. D. Fischer 1967. A new glycogen-debranching system in yeast. Archives of Biochemistry and Biophysics 121, 245–6.

    CAS  Google Scholar 

  • Lee, E. Y. C., J. H. Carter, L. D. Nielsen and E. H. Fischer 1970. Purification and properties of yeast amylo-1,6-glucosidase and oligo-1,4 → 1,4-glucan transferase. Biochemistry 9, 2347–55.

    CAS  Google Scholar 

  • Maddox, I. S. and J. S. Hough 1970. Proteolytic enzymes of Saccharomyces carlsbergensis. Biochemical Journal 117, 843–8.

    CAS  Google Scholar 

  • Maddox, I. S. and J. S. Hough 1971. Yeast glucanase and mannanase. Journal of the Institute of Brewing 77, 44–7.

    CAS  Google Scholar 

  • Mahoney, R. R. and J. R. Whitaker 1977. Stability and enzymatic properties of β-galactosidase from Kluyveromyces fragilis. Journal of Food Science 1, 327–50.

    CAS  Google Scholar 

  • Mahoney, R. R. and J. R. Whitaker 1978. Purification and physicochemical properties of β-galactosidase from Kluyveromyces fragilis. Journal of Food Science 43, 584–91.

    CAS  Google Scholar 

  • Mahoney, R. R., T. A. Nickerson and J. R. Whitaker 1975. Selection of strain, growth conditions, and extraction procedures for optimum production of lactase from Kluyveromyces fragilis. Journal of Dairy Science 58, 1620–9.

    CAS  Google Scholar 

  • Mahvi, T. A., S. S. Spicer and N. J. Wright 1974. Cytochemistry of acid mucosubstance and acid phosphatase in Cryptococcus neoformans. Canadian Journal of Microbiology 20, 833–8.

    CAS  Google Scholar 

  • Manners, D. J. 1962. Enzymic synthesis and degradation of starch and glycogen. Advances in Carbohydrate Chemistry 17, 371–430.

    CAS  Google Scholar 

  • Marder, R., J. M. Becker and F. Naider 1977. Peptide transport in yeast. Utilization of leucine and lysine containing peptides by Saccharomyces cerevisiae. Journal of Bacteriology 131, 906–16.

    CAS  Google Scholar 

  • Marshall, J. J. 1980. A novel glucoamylase from Cladosporium resinae. In Mechanisms of saccharide polymerization and depolymerization, J. J. Marshall (ed.), 119 - 24. New York: Academic Press.

    Google Scholar 

  • Martini, A. and F. Federici 1980. Partial purification of a yeast extracellular acid protease. Journal of Dairy Science 63, 1397–402.

    Google Scholar 

  • Maruo, B. andT. Kobayashi 1951. Enzymic scission of the branch links in amylopectin. Nature (London) 167, 606–7.

    CAS  Google Scholar 

  • Matsusaka, K., S. Chiba and T. Shimomura 1977. Purification and substrate specificity of brewer’s yeast α-glucosidase. Agricultural Biology and Chemistry 41, 1917–23.

    CAS  Google Scholar 

  • Mayer, F. C. and J. Larner 1959. Substrate cleavage point of the α- and β amylases. Journal of the American Chemical Society 81, 188–93.

    CAS  Google Scholar 

  • Moulin, G. and P. Galzy 1978. Amylase activity of Torulopsis ingeniosa di Menna. Folia Microbiologia 23, 423–7.

    CAS  Google Scholar 

  • Moulin, G., H. Boze and P. Galzy 1982. Amylase activity in Pichiapolymorpha. Folia Microbiologia 27, 377–81.

    CAS  Google Scholar 

  • Myrback, K. and W. Schilling 1965. Studies on yeast β-fructofuranosidase. Part XVI. Partial purification. Enzymologia 29, 306–14.

    CAS  Google Scholar 

  • Needleman, R. B., H. J. Federoff, T. R. Eccleshall, B. Buchferer and J. Marmur 1978. Purification and characterization of an α-glucosidase from Saccharomyces carlsbergensis. Biochemistry 17, 4657–61.

    CAS  Google Scholar 

  • Neuberg, C. and R. Mandl 1950. Invertase. In The enzymes, J. B. Sumner and K. Myrback (eds), Vol. 1, Part 1, Chapter 14. New York: Academic Press.

    Google Scholar 

  • Neuberg, C. and I. S. Roberts 1946. Invertase. Sugar Research Foundation Science Reports Series 4, 1–62.

    Google Scholar 

  • Nurminen, T. and H. Suomalainen 1970. The lipolytic activities of the isolated cell envelope fractions of baker’s yeast. Biochemical Journal 118, 759–63.

    CAS  Google Scholar 

  • Ottolenghi, P. 1971. A comparison of five genetically distinct invertases from Saccharomyces. European Journal of Biochemistry 18, 544–52.

    CAS  Google Scholar 

  • Parkkinen, E. and H. Suomalainen 1982. Esterases of baker’s yeast. II. Substrate specificities towards esters formed during sugar fermentations. Journal of the Institute of Brewing 88, 34–8.

    CAS  Google Scholar 

  • Parodi, A. J. 1981. Biosynthetic mechanisms for cell envelope polysaccharides. In Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, W. N. Arnold (ed.), Vol. II, Chapter 2, 47–64. Boca Raton: CRC Press.

    Google Scholar 

  • Peciarova, A. and P. Biely 1982. β-Xylosidases and a novel non-specific wall bound β-glucosidase of the yeast Cryptococcus albidus. Biochimica et Biophysica Acta 716, 391–9.

    CAS  Google Scholar 

  • Peel, J. L. 1951. Ester formation by yeasts. 2. Formation of ethyl acetate by washed suspensions of Hansenula anomala. Biochemical Journal 449, 62–7.

    Google Scholar 

  • Perlman, D. and H. O. Halvorson 1981. Distinct repressible mRNA’s for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell 25, 525–36.

    CAS  Google Scholar 

  • Perlman, D., H. O. Halvorson and L. E. Cannon 1982. Presecretory and cytoplasmic invertase polypeptides encoded by distinct mRNA’s derived from the same structural gene differ by a signal sequence. Proceedings of the National Academy of Sciences of the USA 79, 781–5.

    CAS  Google Scholar 

  • Phaff, H. J. 1971. Genus 20, Schwanniomyces. In The yeasts, a taxonomic study, 2nd edn, J. Lodder (ed.), 756 - 66. Amsterdam: North-Holland.

    Google Scholar 

  • Phillips, A. W. 1959. The purification of a yeast maltase. Archives of Biochemistry and Biophysics 80, 346–52.

    CAS  Google Scholar 

  • Phillips, L. L. and M. L. Caldwell 1951a. A study of the purification and properties of a glucose-forming amylase of Rhizopus delemar, glue amylase. Journal of the American Chemical Society 73, 3559–63.

    CAS  Google Scholar 

  • Phillips, L. L. and M. L. Caldwell 1951b. A study of the action of glue amylase, a glucose-producing amylase, formed by the mold Rhizopus delemar. Journal of the American Chemical Society 73, 3563–8.

    CAS  Google Scholar 

  • Puglisi, P. P., I. Ferrero and A. Algeri 1970. An inducible β-galactosidase in Saccharomyces cerevisiae. Giorn. Microbiol. 18, 57–67.

    CAS  Google Scholar 

  • Rapoport, G. and R. Dedonder 1963a. La levane-sucrase de Bacillus subtilis. II. Hydrolyse et transfer à partir des levans. Bulletin de la Société de Chimie Biologique 45, 493–513.

    CAS  Google Scholar 

  • Rapoport, G. and R. Dedonder 1963b. La levanesucrase de Bacillus subtilis. III. Réactions d’hydrolyse de transfert et d’échange avec des analogues du saccharose. Bulletin de la Société de Chimie Biologique 45, 515–35.

    CAS  Google Scholar 

  • Reese, E. T., J. E. Lola and F. W. Parrish 1969. Modified substrates and modified products as inducers of carbohydrases. Journal of Bacteriology 100, 1151–4.

    CAS  Google Scholar 

  • Ruttloff, H., A. Taeufel, R. Friese and F. Zickler 1970. Secretion of glucoamylase isoenzymes by a strain of the genus Endomycopsis. Zeitschrift fur Allgemeine Mikrobiologie 10, 335–40.

    CAS  Google Scholar 

  • Sa-Correia, I. and N. van Uden 1981. Production of biomass and amylases by the yeast Lipomyces kononenkoae in starch-limited continuous culture. European Journal of Applied Microbiology and Biotechnology 13, 24–8.

    CAS  Google Scholar 

  • San Bias, G. and W. L. Cunningham 1974. Production of an extracellular acid phosphatase by the yeast Hansenula holstii NCYC 560. Biochimica et Biophysica Acta 343, 208–10.

    Google Scholar 

  • Sawai, T. and E. J. Hehre 1962. A novel amylase (Candida transglucosyl-amylase) that catalyzes glucosyl transfer from starch and dextrins. Journal of Biological Chemistry 237, 2047–52.

    CAS  Google Scholar 

  • Sawai, T. and E. J. Hehre 1963. The distribution of trans glucosyl-amylase among Candida yeasts. Antonie van Leeuwenhoek Journal 29, 377–85.

    CAS  Google Scholar 

  • Sills, A. M. and G. G. Stewart 1982. Production of amylolytic enzymes by several yeast species. Journal of the Institute of Brewing 88, 313–16.

    CAS  Google Scholar 

  • Sills, A. M., I. Russell and G. G. Stewart 1983. The production and use of yeast amylases in the brewing of low-carbohydrate beer. Proceedings of the Congress of the European Brewery Convention, 19th, 377–84. Chemical Abstracts 101, 5515 (1984).

    Google Scholar 

  • Sills, A. M., I. Russell and G. G. Stewart 1984. The production and use of yeast amylases in the brewing of low-carbohydrate beer. Chemical Abstracts 101, 5515.

    Google Scholar 

  • Snyder, H. E. and H. J. Phaff 1960. Studies on beta-fructofuranosidase (inulinase) produced by Saccharomyces fragilis. Antonie van Leeuwenhoek Journal 26, 433–52.

    CAS  Google Scholar 

  • Spaepen, M. and H. Verachtert 1982. Esterase activity in the genus Brettanomyces. Journal of the Institute of Brewing 88, 11–17.

    CAS  Google Scholar 

  • Spencer, J. F. T. and P. A. J. Gorin 1973. Mannose-containing polysaccharides of yeasts. Biotechnology and Bioengineering 15, 1–12.

    CAS  Google Scholar 

  • Spencer-Martins, I. and N. van Uden 1979. Extracellular amylolytic system of the yeast Lipomyces kononenkoae. European Journal of Applied Microbiology and Biotechnology 6, 241–50.

    CAS  Google Scholar 

  • Stewart, G. G. 1981. The genetic manipulation of industrial yeast strains. Canadian Journal of Microbiology 27, 973–90.

    CAS  Google Scholar 

  • Suomalainen, H. 1969. Trends in physiology and biochemistry of yeasts. Antonie van Leeuwenhoek Journal 35 (suppl.), 83–111.

    Google Scholar 

  • Suzuki, S. 1981. Antigenic determinants. In Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, W. N. Arnold (ed.), Vol. I, Chapter 6, 85–96. Boca Raton: CRC Press.

    Google Scholar 

  • Suzuki, H., S. C. Li and Y. T. Li 1970. α-Galactosidase from Mortierella vinacea. Crystallization and properties. Journal of Biological Chemistry 245, 781–6.

    Google Scholar 

  • Tamaki, H. 1980. Purification of glucoamylase isoenzymes produced by Saccharomyces diastaticus. Doshisha Joshi Daigaku Gkijatsu Kinkyu Nenpo 31, 166–82.

    Google Scholar 

  • Thill, G. P., R. P. Kramer, K. T. Turner and K. A. Bostian 1983. Comparative analysis of the 5’-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae. Molecular and Cellular Biology 3, 570–9.

    CAS  Google Scholar 

  • Thivend, P., C. Mercier and A. Guilbot 1972. Determination of starch with glucoamylase. In Methods in carbohydrate chemistry, R. L. Whistler and J. N. BeMiller (eds), Vol. VI, Chapter 14, 100–5. New York and London: Academic Press.

    Google Scholar 

  • Tingle, M. and H. O. Halvorson 1972. Mutants in Saccharomyces lactis controlling both β-glucosidase and β-galactosidase activities. Genetical Research 19, 27–32.

    CAS  Google Scholar 

  • Trimble, R. B., F. Maley and W. Watorek 1981. Subunit structure and carbohydrate composition of the extracellular acid phosphatase of Rhodotorula glutinis. Journal of Biological Chemistry 256, 10037–43.

    CAS  Google Scholar 

  • Tsujisaka, Y., J. Fukumoto and T. Yamamoto 1958. Specificity of crystalline amylase of moulds. Nature (London) 181, 770–1.

    CAS  Google Scholar 

  • Uwajima, T., H. Yagi and O. Terada 1972. Purification, crystallization and some properties of β-galactosidase from Saccharomyces fragilis. Agricultural Biology and Chemistry 36, 570–7.

    CAS  Google Scholar 

  • van der Walt, J. P. 1971. Genus 8, Kluyveromyces. In The yeasts, a taxonomic study, 2nd edn, J. Lodder (ed.), 316–78. Amsterdam: North-Holland.

    Google Scholar 

  • Villa, T. G. and H. J. Phaff 1980. Recovery of invertase and laminarinase from industrial waste broth of baker’s yeast. European Journal of Applied Microbiology and Biotechnology 9, 9–14.

    CAS  Google Scholar 

  • Villa, T. G., V. Notario and J. R. Villanueva 1979. Occurrence of an endo-1,3-β-glucanase in culture fluids of the yeast Candida utilis. Purification and characterization of the enzyme activity. Biochemical Journal 177, 107–14.

    CAS  Google Scholar 

  • Walker, G. J. and W. J. Whelan 1960. The mechanism of carbohydrase action. 7. Final stages in the salivary α-amylolysis of amylose, amylopectin and glycogen. Biochemical Journal 76, 257–63.

    CAS  Google Scholar 

  • Wallenfels, K. and I. R. Rachead 1966. Crystallization and stereospecificity of pullulanase from Aerobacter aerogenes. Biochemical Journal 344, 524–6.

    CAS  Google Scholar 

  • Weill, L. E., R. J. Burch and J. W. van Dyck 1954. An α-amyloglucosidase that produces β-glucose. Cereal Chemistry 31, 150–8.

    CAS  Google Scholar 

  • Weimberg, R. and W. L. Orton 1965. Elution of acid phosphatase from the cell surface of Saccharomyces mellis by potassium chloride. Journal of Bacteriology 90, 82–94.

    CAS  Google Scholar 

  • Wendoff, W. L., C. H. Amundsen and N. F. Olsen 1970. Nutrient requirements and growth conditions for production of lactase enzyme by Saccharomyces fragilis. Journal of Milk Food Technology 33, 451–4.

    Google Scholar 

  • Whelan, W. J. 1960. The action patterns of α-amylases. Die Starke 12, 358–64.

    CAS  Google Scholar 

  • Whistler, R. L. and W. M. Corbett 1957. Polysaccharides. In The carbohydrates, chemistry, biochemistry, physiology, W. Pigman (ed.), Chapter XII, Part I, 641–708. New York: Academic Press.

    Google Scholar 

  • Whistler, R. L. and C. C. Tu 1953. Crystalline xyloheptaose. Journal of the American Chemical Society 75, 645–7.

    CAS  Google Scholar 

  • Wickerham, L. J., L. B. Lockwood, D. G. Pettijohn and G. E. Ward 1944. Starch hydrolysis and fermentation by the yeast Endomycopsis fibuligera. Journal of Bacteriology 48, 413–27.

    CAS  Google Scholar 

  • Wilson, J. J. and W. M. Ingledew 1982. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Applied Environmental Microbiology 44, 301–7.

    CAS  Google Scholar 

  • Yashphe, J. and H. O. Halvorson 1976. β - D-Galactosidase activity in single cells during cell cycle of Saccharomyces lactis. Science 191, 1283–4.

    CAS  Google Scholar 

  • Yoshioka, K. and N. Hashimoto 1981. Ester formation by alcohol acetyltransferase from brewer’s yeast. Agricultural Biology and Chemistry 445, 2183–90.

    Google Scholar 

  • Youngquist, R. W. and W. J. Brables 1982. Single-dough cookies having stable-storage texture. US Patent. Chemical Abstracts 97, 180619

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. R. BErry, G. G. Stewart and I. Russell

About this chapter

Cite this chapter

Arnold, W.N. (1987). Hydrolytic enzymes. In: Berry, D.R., Russell, I., Stewart, G.G. (eds) Yeast Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3119-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3119-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7903-7

  • Online ISBN: 978-94-009-3119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics