Skip to main content

Rapid responses to stress in Eurytemora affinis

  • Conference paper
Biology of Copepods

Part of the book series: Developments in Hydrobiology ((DIHY,volume 47))

Abstract

E. affinis can adjust to temperature stress in a matter of hours. Adaptation is greater in a varying temperature than in a constant temperature, consistent with the estuarine habitat of this calanoid. The species has the capacity to adjust both in the short-term as individuals and also genetically over a number of generations. The adjustments have been examined at several levels of organization. In whole copepods the lime an individual becomes comatose when exposed to a 32 °C temperature and increasing by 1/2 °C at 5 min. intervals, has been used as a repeatable assay and gives a good prediction of survival at 30 °C, the ecological limit of the species in Chesapeake bay, USA. At the molecular and cellular levels, two adaptive mechanisms which have been observed in temperature stressed copepods are the synthesis of novel proteins and phase changes in plasma membrane lipids. Both of these mechanisms have potential for further understanding the adaptation of Eurytemora to variable temperatures. They may also have application as indicators of sublethal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner, M. and J. J. Bonner, 1979. The induction of gene activity in Drosophila by heat shock: A Review. Cell 17: 241–254.

    CAS  Google Scholar 

  • Bradley, B. P., 1976. The measurement of temperature tolerance: Verification of an index. Limnol. Oceanog. 21: 596–599.

    Article  Google Scholar 

  • Bradley, B. P., 1978. Increase in range of temperature tolerance by acclimation in the copepod Eurytemora affinis. Biol. Bull. 154: 177–187.

    Article  Google Scholar 

  • Bradley, B P., 1986. Genetic expression of temperature tolerance in the copepod Eurytemora affinis in different salinity and temperature environments. Mar. Biol. 91: 561–565.

    Article  Google Scholar 

  • Bradley, B P and P. A. Ketzner, 1982. Genetic and non-genetic variability in temperature tolerance of the copepod Eurytemora affinis in live temperature regimes. Biol. Bull. 162: 233–245.

    Article  Google Scholar 

  • Bradley, B P. and M. H. Roberts, Jr., 1987. Contaminant effects on estuarine zooplankton. In S. K. Majumdar. H. M. Austin and L. W. Hall, (eds) Contaminant problems and Management of Living Chesapeake Bay Resources, Pennsylvania Academy of Science: 417–441.

    Google Scholar 

  • Christiansen, J. A., 1984, Changes in phospholipid classes and fatty acids and fatty acid desaturation and incorporation into phospholipids during temperature acclimation of green sunfish Lepomis Cyanellus. Physiol. Zool. 57: 581–492.

    Google Scholar 

  • Dillon, T. M. and M. P. Lynch, 1981. Physiological responses as determinants of stress in marine and estuarine organisms. In G W Barrett and R Rosenberg (eds) Stress effects on Natural Ecosystems. John Wiley. N.Y.: 227–241.

    Google Scholar 

  • Fink, K. and E. Zeuther, 1978. Heat shock proteins in Tetrahyraena. Mol. Cell Biol. 12: 103–115.

    CAS  Google Scholar 

  • Guttman, S. D., C. V. C Glover, C. D. Allis. and M. A. Gorovsky, 1980. Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T pyriformis. Cell 22: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, R., Y. Kitajima, E. Martin, Y. Nozawa, L. Skriver and G. A. Thompson, Jr., 1976. Molecular control of membrane properties during temperature acclimation. Membrane fluidity regulation of fatty acid desaturase action? Biochem. 15: 5228–5233.

    Article  CAS  Google Scholar 

  • Kelley, P. and M. J. Schlesinger, 1978. The effect of amino acid analogs and heal shock on gene expression in chicken embryo fibroblasts. Cell 15: 1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Ketzner, P. A. and B. P. Bradley, 1982 Rate of environmental change and adaptation in the copepod Eurytemora affinis. Evolution 36: 298–306.

    Article  Google Scholar 

  • Laughlin, R. B., H. W. Wofford and J. M. Neff, 1979. Simple potentiometric method for the rapid determination of respiration rates of small aquatic organisms. Aquaculture 16: 77–82.

    Article  Google Scholar 

  • McAlister, L. and B. Finkelstein, 1980. Heat shock proteins and thermal resistance in yeast. Biochem. Biophys Res. Comm. 93: 819–824.

    Article  PubMed  CAS  Google Scholar 

  • Munro, S and H. Pelham, 1985. What turns on heat shock genes. Nature 317: 477–478.

    Article  PubMed  CAS  Google Scholar 

  • Nover, L., (ed) 1984 Heat shock response of eukaryotic cells. Springer-Verlag, Berlin 82 pp.

    Google Scholar 

  • Shinitsky, M., (ed.) 1984. Physiology of membrane fluidity, Vol. II. CRC Press. Boca Raton, Florida, 144 pp.

    Google Scholar 

  • Schlesinger, M. J., 1986 Heat shock proteins: The search for functions. J Cell Biol. 103: 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, M. J., M Ashburner and A. Tissieres, (Eds) 1982. Heat Shock From Bacteria to Man. Cold Spring Harbor Laboratory. 440 pp.

    Google Scholar 

  • Slobodkin, L. W. and Rapoport, 1974. An optimal strategy of evolution. Quart. Rev. Biol. 49: 111–199.

    Google Scholar 

  • Vincent, M. and R. M. Tanguay, 1979. Heat shock induced proteins in the cell nucleus of Chironomus tentans salivary gland. Nature 281: 501–503.

    Article  PubMed  CAS  Google Scholar 

  • Widdows, J, 1985. Physiological responses to pollution. Mar. Pollution Bull. 16 129–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Geoffrey A. Boxshall H. Kurt Schminke

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Bradley, B.P., Hakimzadeh, R., Vincent, J.S. (1988). Rapid responses to stress in Eurytemora affinis . In: Boxshall, G.A., Schminke, H.K. (eds) Biology of Copepods. Developments in Hydrobiology, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3103-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3103-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7895-5

  • Online ISBN: 978-94-009-3103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics