Skip to main content

Artemia habitats: Ion concentrations tolerated by one superspecies

  • Conference paper
Saline Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 44))

Abstract

The geographic distribution, history, and ionic composition of habitats of Artemia franciscana are reviewed with emphasis on habitats with extreme values for ionic concentrations or ionic ratios: a) high-chloride waters (sea water salterns and Zuni and Great Salt Lakes); b) high-sulfate lakes in Saskatchewan (Chaplin and Little Manitou) and on the Okanogan plateau of Washington (Penley Lake complex); and c) high-carbonate habitats in Nevada (Fallon), in California (Mono Lake) and in the Nebraska sandhills (Jesse and Antioch).

First-instar nauplii from populations representative of each of these three habitat clusters were tested for tolerance of potassium (0–5 g K l-1), magnesium (0–1.3 g Mg l-1), and calcium (0–0.6 g Ca l-1). Viabilities were recorded until survivors reached adulthood in pairs of simple defined synthetic culture media which differed in only one parameter. Eight populations showed four levels of tolerance of high potassium. Of four populations tested, all had high viability and fertility in media lacking potassium (above the level in the yeast diet).

Artemia from sea water salterns or from Zuni, Chaplin, or Great Salt Lakes could not tolerate low levels of calcium (< 20 mg l-1). This accounts for their inability to tolerate hypersaline high-carbonate waters. Mono and Fallon nauplii had high viability and fertility in media with low levels of calcium (0–10 mg l-1) but lacking magnesium. They could not survive for seven days, however, in low-calcium (< 10 mg l-1) media that contained moderate amounts of magnesium (1.3 g l-1), indicating that magnesium interferes with utilization of low levels of calcium.

For each of the three cations, the range of concentrations encountered by each population in the habitat is narrower than the range affording high viability in laboratory media. As expected, the midpoints of the two ranges are sometimes similar. In many cases, however, the narrower range of ionic concentrations reported for lake water is at the end of the range affording high viability in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abreu-Grobois, F. A. &J. A. Beardmore, 1982. Genetic differentiation and speciation in the brine shrimp Artemia. In G. Barigozzi (ed.) Mechanisms of Speciation, New York: Alan R. Liss 345–376.

    Google Scholar 

  • Ahlbrandt, T. S. &S. G. Fryberger, 1980. Eolian deposits in the Nebraska sandhills. In Geologic and Paleoecologic Studies of the Nebraska Sand Hills. Geological Survey Professional Paper 1120-A: 1–25.

    Google Scholar 

  • Ahlbrandt, T. S., J. B. Swinehart &D. G. Maroney, 1983. The dynamic Holocene dune fields of the Great Plains and Rocky Mountain Basins, U.S.A. In M. E. Brookfield and T. S. Ahlbrandt (eds), Eolian Sediments and Processes, Amsterdam: Elsevier 379–406.

    Chapter  Google Scholar 

  • D’Agostino, A., 1980. The vital requirements of Artemia: Physiology and Nutrition. In G. Persoone, P. Sorgeloos, O. Roels, and E. Jaspers (eds), The Brine Shrimp, Artemia. Wetteren, Belgium: Universa Press 2: 55 - 82.

    Google Scholar 

  • Anderson, G. C., 1958. Seasonal characteristics of two saline lakes in Washington. Limnol. Oceanogr. 3: 51–68.

    Article  Google Scholar 

  • Bennett, W. A. G., 1962. Saline lake deposits in Washington. Wash. State Dept. Conserv. Bull. 49, 129 pp.

    Google Scholar 

  • Boone, E. &L. G. M. Baas-Becking, 1931. Salt effects on eggs and nauplii of Artemia salina. Jour. Gener. Physiol. 14: 753–763.

    Article  CAS  Google Scholar 

  • Bowen, S. T., 1964. The genetics of Artemia salina. IV. Hybridization of wild populations with mutant stocks. Biol. Bull. 126: 333–344.

    Article  Google Scholar 

  • Bowen, S. T., M. L. Davis, R. L. Fenster &G. A. Lindwall, 1980. Sibling species of Artemia. In G. Persoone, P. Sorgeloos, O. Roels, and E.Jaspers (eds), The Brine Shrimp, Artemia. Wetteren, Belgium: Universa Press 1: 155–167.

    Google Scholar 

  • Bowen, S. T., E. A. Fogarino, K. N. Hitchner, G. L. Dana, V. H. S.Chow, M. R. Buoncristiani &J. R. Carl, 1985.Ecological isolation in Artemia: population differences in tolerance of anion concentrations. J. Crustacean Biol. 5: 106–129.

    Article  Google Scholar 

  • Bradbury, J., 1971. Limnology of Zuni Salt Lake, New Mexico. Bull. Geol. Soc. Am. 82: 379–398.

    Article  CAS  Google Scholar 

  • Bradbury, J. P., 1980. Late Quaternary vegetation history of the Central Great Plains and its relationship to Eolian processes in the Nebraska Sand Hills. In Geologic and Paleoecologic Studies of the Nebraska Sand Hills. Geological Survey Professional Paper 1120-A: 29–38.

    Google Scholar 

  • Broch, E. S., 1969. The osmotic adaptation of the fairy shrimp Branchinecta campestris Lynch to saline astatic waters. Limnol. Oceanogr. 14: 485–492.

    Article  Google Scholar 

  • Clark, L. &S. T. Bowen, 1976. The genetics of A. salina. VII. Reproductive isolation. J. Heredity 67: 385–388.

    CAS  Google Scholar 

  • Clarke, F. W., 1924. The Data of Geochemistry. U.S.G.S. Bull. 770. Fifth edition. Washington, D.C.: U.S. Government Printing Office 841 pp.

    Google Scholar 

  • Cole, G. A. &R. J. Brown, 1967. The chemistry of Artemia habitats. Ecology 48: 858–861.

    Article  Google Scholar 

  • Cole, G. A. &M. C. Whiteside, 1965. Kiatuthlanna, a limnological appraisal. II. Chemical factors and biota. Plateau 38: 36–48.

    Google Scholar 

  • Currey, D. R., 1980. Coastal geomorphology of Great Salt Lake and vicinity. In J. W. Gwynn (ed), Great Salt Lake, a ScientifiC., Historical, and Economic Overview. Salt Lake City, Utah: Utah Geological and Mineral Survey Bulletin 116, 69–82.

    Google Scholar 

  • Dana, G.,D. B. Herbst, C. Lovejoy, B. Loeffler &K. Otsuki. Chemical and Physical Limnology. In D. W. Winkler (ed) 1977. An Ecological Study of Mono Lake, Davis, California: Calif. Institute of Ecology Publication No. 12, University of California 40–57.

    Google Scholar 

  • Dana, G. L., 1981. Comparative population ecology of the brine shrimp Artemia. M. A. thesis, San Francisco, California: San Francisco State University, 125 pp.

    Google Scholar 

  • Eugster, H. P. &L. A. Hardie, 1978. Saline Lakes. In A. Lerman (ed) Lakes: Chemistry, Geology, Physics: 237–293.

    Google Scholar 

  • Eugster, H. P. &B. F. Jones, 1979. Behavior of major solutes during closed-basin brine evolution. Am. J. Sci. 279: 609–631.

    Article  CAS  Google Scholar 

  • Gould, S. J. &R. C. Lewontin, 1978. The spandrels of San Marco and the Panglossian paradigm: a critique of the adpationist programme. Proc. R. Soc. London 205: 292–315.

    Google Scholar 

  • Hammer, U. T., 1978. The saline lakes of Saskatchewan. III. Chemical characterization. Int. Revue ges. Hydrobiol. 63: 311–335.

    Article  CAS  Google Scholar 

  • Hardie, L. A. &H. P. Eugster, 1970. The evolution of closedbasin brines. Mineral. Soc. Am. Spec. Publ. 3: 273–290.

    Google Scholar 

  • Hermance, J. F., W. M. Slocum &G. A. Neumann, 1984. The Long Valley/Mono basin volcanic complex: a preliminary magnetotelluric and magnetic variation interpretation. J. Geophysical Research 89: 8325–8337.

    Article  Google Scholar 

  • Hernandorena, A., 1985. Action de la methionine alimentaire sur la morpholgenese appendiculaire d’Artemia. Hypothese sur l’evolution du phenotype de ce crustace. Reprod. Nutr. Develop. 25: 75–81.

    Article  CAS  Google Scholar 

  • Hicks, W. B., 1921. Potash resources of Nebraska. In F. L. Ransome, H. S. Gale &E. F. Burchard (eds). Contributions to Economic Geology. U.S.G.S. Bulletin 715: 125–139.

    Google Scholar 

  • Hutchinson, G. E., 1937. A contribution to the limnology of arid regions. Trans. Conn. Acad. Arts Sci. 33: 47–132.

    Google Scholar 

  • Johnston, W. R. &J. Proctor, 1981. Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. J. Ecol. 69: 855–869.

    Article  CAS  Google Scholar 

  • Jones, B. F., 1966. Geochemical evolution of closed basin water in the Western Great Basin. In J. L. Rau (ed) Proc. Second Symposium on Salt, Northern Ohio Geological Society, 1: 181–200.

    Google Scholar 

  • Kharaka, Y. K., S. W. Robinson, L. M. &W. W. Carothers, 1984. Hydrogeochemistry of Big Soda Lake, Nevada: an alkaline meromictic desert lake. Geochim. Cosmochim. Acta. 48: 823–835.

    Article  CAS  Google Scholar 

  • Kutzbach, J. E. &F. A. Street-Perrott, 1985. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317: 130–134.

    Article  Google Scholar 

  • LaHaye, P. A. &E. Epstein, 1969. Salt toleration by plants: Enhancement with calcium. Science 166: 295–396.

    Article  Google Scholar 

  • Lazar, B. A., A. Starinsky, E. Katz, E. Sass &S. Ben-Yaakov, 1983. The carbonate system in hypersaline solutions: alkalinity and CaCO3 solubility of evaporated seawater. Limnol. Oceanogr. 28: 978–986.

    Article  CAS  Google Scholar 

  • Lenz, P. H., 1980. Ecology of an alkali-adapted variety of Arte mia from Mono Lake, California, U.S.A. in G. persoone, P. Sorgeloos, O. Roels, and E. Jaspers, (eds), The Brine Shrimp ,Artemia. Wetteren, Belgium: 3: Universa Press 79–96.

    Google Scholar 

  • Main, J. L., 1981. Magnesium and calcium nutrition of a serpentine endemic grass. Amer. Midland Nat. 105: 196–199.

    Article  CAS  Google Scholar 

  • Mason, D. T., 1967. Limnology of Mono Lake, California. Univ. Calif. Publ. Zool. 83, 110 pp.

    Google Scholar 

  • McCarraher, D. B., 1977. Nebraska’s Sandhills Lakes. Nebraska Game and Parks Commission, Lincoln, Nebraska, 67 pp.

    Google Scholar 

  • Melack, J. M., 1983. Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105: 223–230.

    Article  Google Scholar 

  • Miller, C. D., 1985. Holocene eruptions at the Inyo volcanic chain, California: Implications for possible eruptions in Long Valley caldera. Geology 13: 14–17.

    Article  Google Scholar 

  • Nash, K. G., 1978. Geochemistry of selected closed basin lakes in Sheridan County, Nebraska. M.S. Thesis, University of Nebraska, Lincoln, Nebraska, 93 pp.

    Google Scholar 

  • Persoone, G. &P. Sorgeloos, 1980. General aspects of the ecology and biogeography of Artemia. In G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds. The Brine Shrimp, Artemia. Universa Press, Wetteren, Belgium. 3: 3–24.

    Google Scholar 

  • Porter, J. R., 1946. Bacterial Chemistry and Physiology. John Wiley &Sons, New York, 1073 pp.

    Google Scholar 

  • Post, F. J., 1981. Microbiology of the Great Salt Lake north arm. Hydrobiologia 81: 59–69.

    Article  Google Scholar 

  • Rawson, D. S. &G. E. Moore, 1944. The saline lakes of Saskatchewan. Can. J. Res. (Ser. D) 22: 141–201.

    Google Scholar 

  • Riley, J. P. &G. Skirrow, 1975. Chemical Oceanography. New York: Academic Press 1: 1–563.

    Google Scholar 

  • Scudder, G. G. E., 1969b. The fauna of saline lakes on the Fraser Plateau in British Columbia. Verh. Int. Ver. Limnol. 17: 430–439.

    Google Scholar 

  • Stephens, D. W. &D. M. Gillespie, 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study response to enrichment. Limnol. Oceanogr. 21: 74–87.

    Article  CAS  Google Scholar 

  • Street-Parrott, F. A. &S. P. Harrison, 1984. Temporal variations in lake levels since 30,000 yr BP - an index of the global hydrological cycle. In Climate Processes and Climate Sensititivty, Geophysical Monograph 29, American Geophysical Union: 118–129.

    Google Scholar 

  • Sturm, P. A., 1980. The Great Salt Lake brine system. In J. W. Gwynn (ed.), Great Salt Lake: a Scientific, Historical and Economic Overview. Salt Lake City, Utah: Utah Department of Natural Resources Bull, 116. 147–162, 400 pp.

    Google Scholar 

  • Tayler, P. L., L. A. Hutchinson &M. K. Muir, 1980. Heavy metals in the Great Salt Lake, Utah. In J. W. Gwynn (ed.), Great Salt Lake: a Scientific, Historical and Economic Overview. Salt Lake City, Utah: Utah Department of Natural Resources, Bull. 116: 195–200, 400 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Dr W. Junk Publishers, Dordrecht

About this paper

Cite this paper

Bowen, S.T., Buoncristiani, M.R., Carl, J.R. (1988). Artemia habitats: Ion concentrations tolerated by one superspecies. In: Melack, J.M. (eds) Saline Lakes. Developments in Hydrobiology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3095-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3095-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7891-7

  • Online ISBN: 978-94-009-3095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics