Skip to main content

Water as an Environment for Plant Life

  • Chapter
Vegetation of inland waters

Part of the book series: Handbook of vegetation science ((HAVS,volume 15-1))

Abstract

The immigration of terrestrial plants into the freshwater environment presented numerous physiological barriers. Relatively few angiosperms (< 1 percent) and pteridophytes (< 2 percent) have successfully adapted to total submersion in water. Although certain environmental parameters (e.g. temperature) in water are more constant than in the terrestrial habitat, most conditions below water and in water-saturated sediments are acutely hostile to normal growth and reproductive characteristics of macrophytes. Certain plants, such as the emergent angiosperms that grow in wetlands in continuously water-saturated sediments, have adapted very well and are among the most productive plants in the biosphere. Macrophytes and sessile algae within the water, however, exhibit greatly reduced productivity because of the inhibitory effects of water itself to gaseous transport, reduced light availability, and other factors. Phytoplankton algae are the least productive of all aquatic plants, even under the most optimal conditions, as a result of the restrictive nature of physical, chemical, and in some instances biotic properties of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E. D. & Spence, D. H. N. (1981) The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol. 87:269–283.

    CAS  Google Scholar 

  • Arber, A. (1920) Water Plants: A Study of Aquatic Angiosperms. Cambridge University Press, Cambridge. 436 pp.

    Google Scholar 

  • Armstrong, W. (1978) Root aeration in the wetland condition. In: Hook, D. C. & Crawford, R. M. M. (eds.), Plant Life in Anaerobic Environments, Ann Arbor Science Publishers Inc., Ann Arbor, Michigan, pp. 269–297.

    Google Scholar 

  • Bain, J. T. & Proctor, M. C. F. (1980) The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: Some experimental evidence. New Phytol. 86: 393–400.

    CAS  Google Scholar 

  • Barko, J. W. & Smart, R. M. (1981) Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecol. Monogr. 51:219–235.

    Google Scholar 

  • Barth, H. (1957) Aufnahme und Abgabe von CO2 und O2 bei submersen Wasserpflanzen. Gewässer Abwässer 4(17/18): 18–81.

    Google Scholar 

  • Beer, S. & Waisel, Y. (1979) Some photosynthetic carbon fixation properties of seagrasses. Aquatic Bot. 7:129–138.

    CAS  Google Scholar 

  • Beer, S. & Wetzel, R. G. (1981) Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis. Plant Sci. Lett. 21:199–207.

    CAS  Google Scholar 

  • Beer, S. & Wetzel, R. G. (1982a) Photosynthesis in submersed macrophytes of a temperate lake. Plant Physiol. 70: 488–492.

    PubMed  CAS  Google Scholar 

  • Beer, S. & Wetzel, R. G. (1982b) Photosynthetic carbon fixation pathways in Zostera and three Florida seagrasses. Aquatic Bot. 13: 141–146.

    CAS  Google Scholar 

  • Beer, S., Eshel, A. & Waisel, Y. (1977) Carbon metabolism in seagrasses. I. The utilization of exogenous inorganic carbon species in photosynthesis. J. Exp. Bot. 28: 1180–1189.

    CAS  Google Scholar 

  • Beer, S., ShomerIlan, A. & Waisel, Y. (1980) Carbon metabolism in seagrasses. II. Patterns of photosynthetic CO2 incorporation. J. Exp. Bot. 31:1019–1026.

    CAS  Google Scholar 

  • Bertani, A., Brambilla, I. & Menegus, F. (1980) Effect of anaerobiosis on rice seedlings: Growth, metabolic rate, and fate of fermentation productions. J. Exp. Bot. 31: 325– 331.

    CAS  Google Scholar 

  • Black, M. A., Maberly, S. C. & Spence, D. H. N. (1981) Resistances to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytol. 89: 557–568.

    CAS  Google Scholar 

  • Blotnick, J. R., Rho, J. & Gunner, H. B. (1980) Ecological characteristics of the rhizosphere microflora of Myriophyllum heterophyllum. J. Environ. Qual. 9: 207– 210.

    CAS  Google Scholar 

  • Bowes, G. (1985) Pathways of CO2 fixation by aquatic organisms. In: Wetzel, R. G. (Ed.), Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. Amer. Soc. Plant Physiol., Rockville, Maryland. pp. 187–210.

    Google Scholar 

  • Bowes, G., Holaday, A. S. & Haller, W. T. (1979) Seasonal variation in the biomass, tuber density, and photosynthetic metabolism of Hydrilla in three Florida lakes. J. Aquat. Plant Manage. 17: 61–65.

    Google Scholar 

  • Bristow, J. M. (1969) The effects of carbon dioxide on the growth and development of amphibious plants. Can. J. Bot. 47:1803–1807.

    CAS  Google Scholar 

  • Bristow, J. M. (1974) Nitrogen fixation in the rhizosphere of freshwater angiosperms. Can. J. Bot. 52: 217–221.

    CAS  Google Scholar 

  • Broecker, W. S. (1974) Chemical Oceanography. Harcourt, Brace, Jovanovich, New York.

    Google Scholar 

  • Brown, J. M. A., Dromgoole, F. I. Towsey, M. W. & Browse, J. (1974) Photosynthesis and photorespiration in aquatic macrophytes. In: Bieleski, R. L., Ferguson, A. R. & Cresswell, M. M. (Eds.), Mechanisms of Regulation of Plant Growth, Bull. R Soc. New Zealand (Wellington), 12, pp. 243–249.

    Google Scholar 

  • Browse, J. A., Dromgoole, F. I. & Brown, J. M. A. (1977) Photosynthesis in the aquatic macrophyte Egeria densa. I. 14C fixation at natural CO2 concentrations. Aust. J. Plant Physiol. 4: 169–176.

    CAS  Google Scholar 

  • Browse, J. A., Brown, J. M. A. & Dromgoole, F. I. (1979) Photosynthesis in the aquatic macrophyte Egeria densa. II. Effects of inorganic carbon conditions on 14C fixation. Aust. J. Plant Physiol. 6: 1–9.

    CAS  Google Scholar 

  • Browse, J. A., Brown, J. M. A. & Dromgoole, F. I. (1980) Malaie synthesis and metabolism during photosynthesis in Egeria densa Planch. Aquatic Bot. 8: 295– 305.

    CAS  Google Scholar 

  • Carr, J. L. (1969) The primary productivity and physiology of Ceratophyllum demersum. II. Micro primary productivity, pH, and the P/R ratio. Aust. J. Mar. Freshwat. Res. 20: 127–142.

    CAS  Google Scholar 

  • Chang, T. P. (1980) Mucilage sheath as a barrier to carbon uptake in a cyanophyte, Oscillatoria rubescens D.C. Arch. Hydrobiol. 88:128–133.

    Google Scholar 

  • Crawford, R. M. M. (1978) Metabolic adaptations to anoxia. In: Hook, D. C. & Crawford, R. M. M. (eds.), Plant Life in Anaerobic Environments, Ann Arbor Science Publ. Inc., Ann Arbor, Michigan, pp. 119–136.

    Google Scholar 

  • Dacey, J. W. H. (1981) Pressurized ventilation in the yellow waterlily. Ecology 62: 1137–1147.

    Google Scholar 

  • Dale, H. M. (1981) Hydrostatic pressure as the controlling factor in the depth distribution of Eurasian watermilfoil, Myrìophyllum spicatum L. Hydrobiologia 79: 239– 241.

    Google Scholar 

  • Danckwets, P. V. (1970) Gas-liquid Reactions. McGraw Hill, New York.

    Google Scholar 

  • Dickerman, J. A. & Wetzel, R. G. (1985) Clonal growth in Typha latifolia L.: Population dynamics and demography of the ramets. J. Ecol. 73:535–552.

    Google Scholar 

  • Emerson, S. (1975) Chemically enhanced CO2 gas exchange in a eutrophic lake: A general model. Limnol. Oceanogr. 20: 743–753.

    CAS  Google Scholar 

  • Filbin, G. J. (1980) Photosynthesis, photorespiration and primary productivity in floating, floating leaved and emergent aquatic plants. Ph.D. Dissertation, Wayne State Univ., Detroit.

    Google Scholar 

  • Gates, D. M. (1980) Biophysical Ecology. Springer-Verlag, New York. 611 pp.

    Google Scholar 

  • Gessner, F. (1959) Hydrobotanik. Die Physiologischen Grundlagen der Pflanzenverbreitung im Wasser. II. Stoffhaushalt. Berlin, VEB Deutscher Verlag der Wissenschaften. 701 pp.

    Google Scholar 

  • Glime, J. M., Wetzel, R. G. & Kennedy, B. J. (1982) The effects of bryophytes on succession from alkaline marsh to Sphagnum bog. Amer. Midland Nat. 108: 209–223.

    Google Scholar 

  • Goulder, R. (1980) Day-time variations in the rates of production by two natural communities of submerged freshwater macrophytes. J. Ecol. 58: 521–528.

    Google Scholar 

  • Grace, J. B. & Wetzel, R. G. (1981a) Phenotypic and genotypic components of growth and production in Typha latifolia: Experimental studies in marshes of differing successional maturity. Ecology 62: 789–801.

    Google Scholar 

  • Grace, J. B. & Wetzel ,R. G. (1981b) Habitat partitioning and competitive displacement in cattails (Typha): Experimental field studies. Amer. Nat. 118: 463–474.

    Google Scholar 

  • Grace, J. B. & Wetzel, R. G. (1982a) Niche differentiation between two plant species: Typha latifolia and Typha angustifolia. Can. J. Bot. 60:46–57.

    Google Scholar 

  • Grace, J. G. & Wetzel, R. G. (1982b) Variations in growth and reproduction within two rhizomatous plant species: Typha latifolia and Typha angustifolia. Oecologia 53: 258–263.

    Google Scholar 

  • Haslam, S. M. (1980) River Vegetation. Its Identification, Assessment, and Management. Cambridge Univ. Press, Cambridge. 154 pp.

    Google Scholar 

  • Helder, R. J. & Harmelen, M. V. (1982) Carbon assimilation pattern in the submerged leaves of the aquatic angiosperm Vallisneria spiralis L. Acta Bot. Neerlandica 31: 281–295.

    CAS  Google Scholar 

  • Helder, R. J. & Zanstra, P. E. (1977) Changes of the pH at the upper and lower surface of bicarbonate assimilating leaves of Potamogeton lucens L. Proc. Koninklijke Nederl. Akad. Wetenschappen, Ser. C. Biol. Med. Sci. 80:421–436.

    CAS  Google Scholar 

  • Helder, R. J., Prins, H. B. A. & Schuurmans, J. (1974) Photorespiration in leaves of Vallisneria spiralis. Proc. Koninklijke Nederl. Akad. Wetenschappen, Ser. C. Biol. Med. Sci. 77: 338–344.

    CAS  Google Scholar 

  • Helder, R. J., Boerman, J. & Zanstra ,P. E. (1980) Uptake pattern of carbon dioxide and bicarbonate by leaves of Potamogeton lucens L. Proc. Koninklijke Nederl. Akad. Wetenschappen ,Ser. C. Biol. Med. Sci. 83: 151–166.

    CAS  Google Scholar 

  • Holiday, A. S. & Bowes, G. (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiol. 65: 331–335.

    Google Scholar 

  • Hough, R. A. (1974) Photorespiration and productivity in submersed aquatic vascular plants. Limnol. Oceanogr. 19: 912–927.

    CAS  Google Scholar 

  • Hough, R. A. & Wetzel, R. G. (1972) A 14C-assay for photorespiration in aquatic plants. Plant Physiol. 49: 987–990.

    PubMed  CAS  Google Scholar 

  • Hough, R. A. & Wetzel, R. G. (1977) Photosynthetic pathways of some aquatic plants. Aquatic Bot. 3: 297–303.

    CAS  Google Scholar 

  • Hough, R. A. & Wetzel, R. G. (1978) Photorespiration and CO2 compensation point in Najas flexilis. Limnol. Oceanogr. 23: 719–724.

    CAS  Google Scholar 

  • Hutchinson, G. E. (1957) A Treatise on Limnology. I. Geography, Physics, and Chemistry. New York, John Wiley & Sons, 1015 pp.

    Google Scholar 

  • Hutchinson, G. E. (1967) A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. New York, John Wiley & Sons, 1115 pp.

    Google Scholar 

  • Hutchinson, G. E. (1975) A Treatise on Limnology. Vol. III. Limnological Botany. New York, John Wiley & Sons. 660 pp.

    Google Scholar 

  • Hynes, H. B. N. (1970) The Ecology of Running Waters. Toronto, University of Toronto Press. 555 pp.

    Google Scholar 

  • Jaworski, G. H. M., Tailing, J. F. & Heaney, S. I. (1981) The influence of carbon dioxide-depletion on growth and sinking rate of two planktonic diatoms in culture. Br. Phycol. J. 16: 395–410.

    Google Scholar 

  • Jones, M. B. & Milburn, R. T. (1978) Photosynthesis in papyrus (Cyperus papyrus L.). Photosynthetica 12: 197–199.

    Google Scholar 

  • Joshi, M. M. & Holllis, J. P. (1977) Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere. Science 195: 179–180.

    PubMed  CAS  Google Scholar 

  • Kadono, Y. (1980) Photosynthetic carbon sources in some Potamogeton species. Bot. Mag. Tokyo 93: 185–193.

    Google Scholar 

  • Katayama, T. (1961) Studies on the intercellular spaces in rice. Crop Sci. Soc. Japan Proc. 29: 229–233.

    Google Scholar 

  • Keeley, J. E. (1981) Isoetes howellii: A submerged aquatic CAM plant? Amer. J. Bot. 68: 420–424.

    CAS  Google Scholar 

  • Keeley, J. E. (1982) Distribution of diurnal acid metabolism in the genus Isoetes. Amer. J. Bot. 69: 254–257.

    CAS  Google Scholar 

  • Kremer, B. P. (1981) Aspects of carbon metabolism in marine macroalgae. Oceanogr. Mar. Biol. Ann. Rev. 19:41–94.

    Google Scholar 

  • Littlefield, L. & Forsberg, C. (1965) Absorption and translocation of phosphorus-32 by Chara globularis Thuill. Physiol. Plant. 18: 291–296.

    CAS  Google Scholar 

  • Lloyd, N. D. H., Canvin, D. T. & Bristow, J. M. (1977) Photosynthesis and photorespiration in submerged aquatic plants. Can. J. Bot 55: 3001–3005.

    CAS  Google Scholar 

  • Loats, K. V., Noble, R. & Takemoto, B. (1981) Photosynthesis under low-level SO2 and CO2 conditions in three duckweed species. Bot. Gaz. 142:305–310.

    CAS  Google Scholar 

  • Losee, R. F. & Wetzel, R. G. (1983) Selective light attenuation by the periphyton complex. In: Periphyton of Freshwater Ecosystems. R. G. Wetzel, Ed. Developments in Hydrobiology 17: 89–96.

    Google Scholar 

  • Lucas, W. J. (1975) Photosynthetic fixation of 14carbon by internodal cells of Chara corallina. J. Exp. Bot. 26: 331–346.

    CAS  Google Scholar 

  • Lucas, W. J. & Berry, J. A. (Eds.) (1985) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. Amer. Soc. Plant Physiol., Rockville, Maryland. 494 pp.

    Google Scholar 

  • Lucas, W. J., Tyree, M. T. & Petrov, A. (1978) Characterization of photosynthetic 14carbon assimilation by Potamogeton lucens L. J. Exp. Bot. 29:1409–1421.

    CAS  Google Scholar 

  • McNaughton, S. J. (1966) Ecotype function in the Typha community-type. Ecol. Mongr. 36: 297–325.

    Google Scholar 

  • McNaughton, S. J. (1969) Genetic and environmental control of glycolic acid oxidase activity in ecotypic populations of Typha latifolia. Amer. J. Bot. 56: 37–41.

    CAS  Google Scholar 

  • McNaughton, S. J. & Fullem, L. W. (1969) Photosynthesis and photorespiration in Typha latifolia. Plant Physiol. 45: 703–707.

    Google Scholar 

  • Mitsui, S. & Kurihara, K. (1962) On the utilization of carbon in fertilizers through rice roots under pot experimental conditions. Soil Sci. Plant Nutr. 8: 226–233.

    CAS  Google Scholar 

  • Moeller, R. E. (1978) Carbon-uptake by the submerged hydrophyte Utricularia purpurea. Aquatic Bot. 5: 209–216.

    CAS  Google Scholar 

  • Monteith, J. L., Szeic, G. & Yabuki, K. (1964) Crop phytosynthesis and the flux of carbon dioxide below the canopy. J. Appl. Ecol. 1: 321–337.

    CAS  Google Scholar 

  • Morris, J. T. (1980) The nitrogen uptake kinetics of Spartina alterniflora in culture. Ecology 61: 1114–1121.

    CAS  Google Scholar 

  • Moss, D. N., Musgrave, R. B. & Lemon, E. R. (1961) Photosynthesis under field conditions. III. Some effects of light, carbon dioxide, temperature, and soil moisture on photosynthesis, respiration and transpiration of corn. Crop. Sci. 1:83–87.

    CAS  Google Scholar 

  • Murata, Y., Osada, A. & Iyama, J. (1957) Physiological roles of carbon dioxide in plants. Agric. Hortic. 32: 11–14.

    Google Scholar 

  • Otsuki, A. & Wetzel, R. G. (1972) Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763–767.

    CAS  Google Scholar 

  • Otsuki, A. & Wetzel, R. G. (1973) Interaction of yellow organic acids with calcium carbonate in freshwater. Limnol. Oceanogr. 18:490–493.

    CAS  Google Scholar 

  • Otsuki, A. & Wetzel, R. G. (1974) Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hard-water lake. Arch. Hydrobiol. 73: 14–30.

    Google Scholar 

  • Payne, F. C. (1982) Influence of hydrostatic pressure on gas balance and lacunar structure in Myriophyllum spicatum L. Ph.D. Dissertation, Michigan State Univ. 109 pp.

    Google Scholar 

  • Penhale, P. A. & Wetzel, R. G. (1982) Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Can. J. Bot. 61: 1421–1428.

    Google Scholar 

  • Prins, H. B. A. & Walsarie-Woff, R. (1974) Photorespiration in leaves of Vallisneria spiralis. The effect of oxygen on the carbon dioxide compensation point. Proc. Akad. van Wetensc. Amsterdam (Ser. C). 77: 239–245.

    Google Scholar 

  • Prins, H. B. A., Snel, J. F. H. Helder, R. I. & Zanstra, P. E. (1980) Photosynthetic HCO3 utilization and OH- excretion in aquatic angiosperms. Light-induced pH changes at the leaf surface. Plant Physiol. 66: 818–822.

    CAS  Google Scholar 

  • Prins, H. B. A., Snel, J. F. H. & Zanstra, P. E. (1982a) The mechanism of bicarbonate utilization. In: Symoens, J. J., Hooper, S. S. & Compère, P. (eds.) Studies on Aquatic Vascular Plants. Royal Bot. Soc. Belgium, Brussels. pp. 120–126.

    Google Scholar 

  • Prins, H. B. A., O’Brien, J. & Zanstra, P. E. (1982b) Bicarbonate utilization in aquatic angiosperms, pH and CO2 concentration at the leaf surface. In: Symoens, J. J., Hooper, S. S. & Compère, P. (eds.) Studies on Aquatic Vascular Plants. Royal Bot. Soc. Belgium, Brussels. pp. 112–119.

    Google Scholar 

  • Prins, H. B. A., Snel, J. F. H., Zanstra, P. E. & Helder, R. J. (1982c) The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentration at the leaf surface. Plant, Cell Environment 5: 207–214.

    CAS  Google Scholar 

  • Raven, J. A. (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167–221.

    CAS  Google Scholar 

  • Raven, J. A. (1981) Nutritional strategies of submerged benthic plants: The acquisition of C, N and P by rhizophytes and haptophytes. New Phytol. 83:1–30.

    Google Scholar 

  • Raven, J. A. (1984) Energetics and Transport in Aquatic plants. A. R. Liss, Inc., New York. 587 pp.

    Google Scholar 

  • Raven, J. A. & Beardall, J. (1981) Carbon dioxide as the exogenous inorganic carbon source for Batrachospermum and Lemanea. Br. Phycol. J. 16: 165–175.

    Google Scholar 

  • Riber, H. H. & Wetzel, R. G. (1987) Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnol. Oceanogr. 32: 1181–1194.

    CAS  Google Scholar 

  • Roelofs, J. G. M., Schuurkes, J. A. A. R. & Smits, A. J. M. (1984) Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquatic Bot. 18: 389–411.

    CAS  Google Scholar 

  • Rodewald-Rudescu, L. (1974) Das Schilfrohr Phragmites communis Trinius. In: Die Binengewässer 27. 302 pp.

    Google Scholar 

  • Ruttner, F. (1947) Zur Frage der Karbonatassimiliation der Wasserpflanzen. I. Die beiden Haupttypen der Kohlenstoffaufnahme. Öst. Bot. Z. 94: 265–294.

    Google Scholar 

  • Ruttner, F. (1948) Zur Frage der Karbonatassimilation der Wasserpflanze II. Das Verhalten von Elodea canadensis und Fontinalis antipyretica in Lösungen von Natrium-bzw. Kaliumbikarbonat. Öst. Bot. Z. 95: 208–238.

    Google Scholar 

  • Ruttner, F. (1960) Ãœber die Kohlenstoffaufnahme bei Algen aus der Rhodophyceen Gattung Batrachospermum. Schweiz Z. Hydrol. 22: 280–291.

    Google Scholar 

  • Sale, P. J. M. & Wetzel, R. G. (1983) Growth and metabolism of Typha species in relation to cutting treatments. Aquatic Bot. 15: 321–334.

    CAS  Google Scholar 

  • Salvucci, M. E. & Bowes, G. (1981) Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiol. 67: 335–340.

    PubMed  CAS  Google Scholar 

  • Sand-Jensen, K. (1978) Metabolic adaptation and vertical zonation of Littorella uniflora (L.). Aschers, and Isoetes lacustris L. Aquatic Bot. 4:1–10.

    Google Scholar 

  • Schwoerbel, J. & Tillmanns, G. C. (1964a) Konzentrationsabhängige Aufnahme von wasserlöslichem P04-P bei submersen Wasserpflanzen. Naturwissenschaften 51: 319–320.

    CAS  Google Scholar 

  • Schwoerbel, J. & Tillmanns, G. C. (1964b) Untersuchungen über die Stoffwechseldynamik in Fliessgewässern. I. Die Rolle höherer Wasserpflanzen: Callitriche hamulata Kütz. Arch. Hydrobiol. (Suppl.) 28: 245–258.

    Google Scholar 

  • Schwoerbel ,J. & Tillmanns, G. C. (1964c) Untersuchungen über die Stoffwechseldynamik in Fliessgewässern. II. Experimentelle Untersuchungen über die Ammoniumaufnahme und pH-Änderung im Wasser durch Callitriche hamulta Kutz. und Fontinalis antipyretica L. Arch. Hydrobiol. (Suppl.) 28: 259–267.

    Google Scholar 

  • Sculthorpe, C. D. (1967) The Biology of Aquatic Vascular Plants. St. Martin’s Press, New York. 610 pp.

    Google Scholar 

  • Smith, F. A. & Walker, N. A. (1980) Photosynthesis by aquatic plants: Effects of unstirred layers in relation to the assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytol. 86:245–259.

    CAS  Google Scholar 

  • Søndergaard, M. (1979) Light and dark respiration and the effect of the lacunal system on refixation of CO2 in submerged aquatic plants. Aquatic Bot. 6: 269–283.

    Google Scholar 

  • Søndergaard, M. & Sand-Jensen, K. (1979) Carbon uptake by leaves and roots of Littorella uniflora L. Aschers. Aquatic Bot. 6: 1–12.

    Google Scholar 

  • Søndergaard, M. & Wetzel, R. G. (1980) Photorespiration and internal recycling of CO2 in the submersed angiosperm Scirpus subterminalis. Can. J. Bot. 58: 591–598.

    Google Scholar 

  • Spence, D. H. N. (1982) The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–125.

    Google Scholar 

  • Steemann Nielsen, E. (1944) Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration. Dansk Bot. Ark. 11: 1–25.

    Google Scholar 

  • Steemann Nielsen, E. (1947) Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk Bot. Ark. 12: 5–71.

    Google Scholar 

  • Stocking, C. R. (1956) Vascular conduction in submerged plants. In: Ruhland, W. (ed.), Handbuch der Pflanzenphysiologie. Band 3. Pflanze und Wasser. Berlin ,Springer Verlag, pp. 587–595.

    Google Scholar 

  • Tailing, J. F. (1973) The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshwat. Biol. 3: 355–362.

    Google Scholar 

  • Tailing, J. F. (1976) The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79–121.

    Google Scholar 

  • Tanaka, A., Kawano, K. & Yamaguchi, J. (1966) Photosynthesis ,respiration ,and plant type of the tropical rice plant. Int. Rice Res. Inst. Tech. Bull. 7: 46.

    Google Scholar 

  • Tessenow,U. & Baynes,Y. (1978) Redoxchemische Einflüsse von Isoetes lacustris L. im Litoralsediment des Feldsees (Hochschwarzwald). Arch. Hydrobiol. 82:20–48.

    CAS  Google Scholar 

  • Titus,J. E. & Adam ,M. S. (1979) Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia 40: 273–286.

    Google Scholar 

  • Tsuzuki ,M. & Migachi ,S. (1981) Effects of CO2-concentration during growth and of ethotyzolamide on CO2 compensation point in Chlorella. FEBS Lett. 103: 221– 223.

    Google Scholar 

  • Twilley ,R. R., Brinson, M. M. & Davis, G. J. (1977). Phosphorus absorption, translocation, and secretion in Nuphar luteum. Limnol. Oceangr. 22: 1022–1032.

    CAS  Google Scholar 

  • Ultsch, G. R. & Anthony, D. S. (1973) The role of the aquatic exchange of carbon dioxide in the ecology of the water hyacinth (Eichhornia crassipes). Florida Sci. 36: 16–22.

    CAS  Google Scholar 

  • Valanne, N., Aro, E. M. & Rintamaki, E. (1982) Leaf and chloroplast structure of two aquatic Ranunculus species. Aquatic Bot. 12: 13–22.

    Google Scholar 

  • Van, T. K., Haller, W. T. & Bowes, G. (1976) Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiol. 58: 761–768.

    PubMed  CAS  Google Scholar 

  • Verduin, J. (1975) Rate of carbon dioxide transport across air-water boundaries in lakes. Limnol. Oceanogr. 20: 1052–1053.

    CAS  Google Scholar 

  • Weaver, C. I. & Wetzel, R. G. (1980) Carbonic anhydrase levels and internal lacunar CO2 concentration in aquatic macrophytes. Aquatic Bot. 8: 173–186.

    CAS  Google Scholar 

  • Weiler, R. G. (1974) Exchange of carbon dioxide between the atmosphere and Lake Ontario. J. Fish. Res. Bd. Can. 31: 329–332.

    CAS  Google Scholar 

  • Westlake, D. F. (1967) Some effects of low-velocity currents on the metabolism of aquatic macrophytes. J. Exp. Bot. 18: 187–205.

    Google Scholar 

  • Westlake, D. F. et al. (1980) Primary production. In: Le Cren, E. D. & Lowe McConnell, R. H. (eds.), The Functioning of Freshwater Ecosystems. Cambridge, Cambridge Univ. Press, pp. 141–246.

    Google Scholar 

  • Wetzel, R. G. (1964) A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Int. Rev. ges. Hydrobiol. 49: 1–64.

    Google Scholar 

  • Wetzel, R. G. (1969) Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard-water lakes. Verh. Int. Ver. Limnol. 17:72–85.

    Google Scholar 

  • Wetzel, R. G. (1975) Limnology. Saunders, Philadelphia. 743 pp.

    Google Scholar 

  • Wetzel, R. G. (1979) The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 145–161.

    Google Scholar 

  • Wetzel, R. G. (1983a) Limnology. 2nd Edition. Saunders, Philadelphia. 860 pp.

    Google Scholar 

  • Wetzel, R. G. (Ed.) (1983b) Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague. Developments in Hydrobiology 17, 346 pp.

    Google Scholar 

  • Wetzel, R. G. (1983c) Attached algae-substrata interactions: fact or myth, and when and how? In: Wetzel, R. G. (ed.), Periphyton of Freshwater Ecosystems. Developments in Hydrobiology 17, pp. 207–215.

    Google Scholar 

  • Wetzel, R. G. & Grace, J. B. (1983) Aquatic Plant Communities. In: Lemon, E. R. (ed.), CO2 and Plants: The response of plants to rising levels of atmospheric carbon dioxide. AAAS Selected Symposium 84. Westview Press, Inc., Boulder, Colorado. pp. 223–280.

    Google Scholar 

  • Wetzel, R. G. & Manny, B. A. (1972) Secretion of dissolved organic carbon and nitrogen by aquatic macrophytes. Verh. Int. Ver. Limnol. 18: 162–170.

    Google Scholar 

  • Wetzel, R. G. & Hough, R. A. (1973) Productivity and role of aquatic macrophytes in lakes: An assessment. Pol. Arch. Hydrobiol. 20: 9–19.

    CAS  Google Scholar 

  • Wetzel, R. G., Brammer, E. S. & Forsberg ,C. (1984) Photosynthesis of submersed macrophytes in acidified lakes. I. Carbon fluxes and recycling of CO2 in Juncus bulbosus L. Aquatic Bot. 19: 329–342.

    Google Scholar 

  • Winter, K. (1978) Short-term fixation of 14carbon by the submerged aquatic angiosperm Potamogeton pectinatus. J. Exp. Bot. 29:1169–1172.

    CAS  Google Scholar 

  • Wium-Andersen, S. (1971) Photosynthetic uptake of free CO2 by the roots of Lobelia dortmanna. Physiol. Plant. 25: 245–248.

    Google Scholar 

  • Wood, K. G. (1974) Carbon dioxide diffusivity across the air-water interface. Arch. Hydrobiol. 73: 57–69.

    Google Scholar 

  • Wood, K. G. (1977) Chemical enhancement of CO2 flux across the air-water interface. Arch. Hydrobiol. 79:103–110.

    CAS  Google Scholar 

  • Yoshida, S., Coronel, V., Parao, F. T. & de los Reyes, E. (1974) Soil carbon dioxide flux and rice photosynthesis. Soil Sci. Plant Nutr. 20: 381–386.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Wetzel, R.G. (1988). Water as an Environment for Plant Life. In: Symoens, J.J. (eds) Vegetation of inland waters. Handbook of vegetation science, vol 15-1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3087-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3087-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7887-0

  • Online ISBN: 978-94-009-3087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics