Skip to main content

Data analysis and display

  • Chapter

Part of the book series: Handbook of vegetation science ((HAVS,volume 7))

Abstract

During the first half of this century, the frame of reference for understanding vegetation was a stable or constant plant community — the climax — which developed in the absence of disturbance and which was dependent upon only climate. Ecologists recognized that such stable communities were seldom achieved. Most communities were in various successional stages, which nevertheless were thought to be trending towards the climax. So at least an ecologist knew where the vegetation was going even if it was not there. An underlying assumption of this model was constancy of climate. The more recent realization that climate is always changing greatly diminishes the value of this conceptual model for understanding vegetation (Davis, 1986). Vegetation as it grows today is the instantaneous state of a system responding to processes operating on various time and space scales. Populations are expanding, contracting, and migrating, often slowly, but at times rapidly. These changes in populations are key for understanding vegetation and are strongly influenced by historical events. A historical perspective is critical for interpreting such important dynamical properties of communities as (1) whether communities are in equilibrium or disequilibrium, (2) whether they are constant, stable, and persistent, and (3) whether their composition and diversity are determined by local, regional, or global processes (Grimm, 1984; Chesson and Case, 1986; Ricklefs, 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, S. T., 1970. The relative pollen productivity and pollen representation of North European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersogelse, II Raekke, 96: 1–99

    Google Scholar 

  • Bartlein, P. J., I. C. Prentice, and T. Webb III, 1986. Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography 13: 35–57.

    Article  Google Scholar 

  • Bartlein, P. J., T. Webb III, and E. Fieri, 1984. Holocene climatic change in the northern Midwest: pollen-derived estimates. Quaternary Research 22: 361–374.

    Article  Google Scholar 

  • Bartlein, P. J. and T. Webb III, 1985. Mean July temperature at 6000 yr B.P. in eastern North America: regression equations for estimates from fossil-pollen data. In: Harington, C. R. (ed.), Climatic Change in Canada 5. Critical Periods in the Quaternary Climatic History of Northern North America, pp. 301–342. Syllogeus No. 55, National Museums of Canada, Ottawa.

    Google Scholar 

  • Bennett, K. D., 1984. The post-glacial history of Pinus sylvestris in the British Isles. Quaternary Science Reviews 3: 133–155.

    Article  Google Scholar 

  • Benninghoff, W. S., 1962. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et Spores 4: 332–333.

    Google Scholar 

  • Bernabo, J. C. and T. Webb III, 1977. Changing patterns in the Holocene pollen record of northeastern North America: a mapped summary. Quaternary Research 8: 64–96.

    Article  Google Scholar 

  • Birks, H. H., 1980. Plant macrofossils in Quaternary lake sediments. Archive für Hydro-biologie, Beiheft Ergebnisse der Limnologie 15: 1–60.

    Google Scholar 

  • Birks, H. J. B., 1976. Late-Wisconsinan vegetational history at Wolf Creek, central Minnesota. Ecological Monographs 46: 395–429.

    Article  Google Scholar 

  • Birks, H. J. B., 1977. Modern pollen rain and vegetation of the St. Elias Mountains Yukon Territory. Canadian Journal of Botany 55: 2367–2382.

    Article  Google Scholar 

  • Birks, H. J. B., 1985. Recent and possible future mathematical developments in quantitative palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 50: 107–147.

    Article  Google Scholar 

  • Birks, H. J. B., 1986. Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, pp. 743–774. John Wiley and Sons, Chichester.

    Google Scholar 

  • Birks, H. J. B. and B. E. Berglund, 1979. Holocene pollen stratigraphy of southern Sweden: a reappraisal using numerical methods. Boreas 8: 257–279.

    Article  Google Scholar 

  • Birks, H. J. B. and A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London. 317 pp.

    Google Scholar 

  • Birks, H. J. B. and M. Saarnisto, 1975. Isopollen maps and principal components analysis of Finnish pollen data for 4000, 6000, and 8000 years ago. Boreas 4: 77–96.

    Article  Google Scholar 

  • Birks, H. J. B., T. Webb III, and A. A. Berti, 1975. Numercial analysis of pollen samples from central Canada: a comparison of methods. Review of Paleobotany and Palynology 20: 133–169.

    Article  Google Scholar 

  • Bonny, A. P., 1972. A method for determining absolute pollen frequencies in lake sediments. New Phytologist 71: 391–403.

    Article  Google Scholar 

  • Bradshaw, R. H. W., 1981. Modern pollen-representation factors for woods in south-east England. Journal of Ecology 69: 45–70.

    Article  Google Scholar 

  • Bradshaw, R. H. W. and T. Webb III, 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66: 721–131.

    Article  Google Scholar 

  • Campbell, N. A. and W. R. Atchley, 1981. The geometry of canonical variate analysis. Systematic Zoology 30: 268–280.

    Article  Google Scholar 

  • Chesson, P. L. and T. J. Case, 1986. Overview: nonequilibrium community theories: chance, variability, history, and coexistence. In Diamond, J. and T. J. Case (eds.), Community Ecology, pp. 229–239. Harper and Row, Publishers, New York.

    Google Scholar 

  • Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.

    Article  Google Scholar 

  • Cleveland, W. S., 1985. The Elements of Graphing Data. Wadsworth Advanced Books and Software, Monterey, California.

    Google Scholar 

  • Cushing, E. J., 1965. Problems in the Quaternary phytogeography of the Great Lakes region. In Wright, H. E., Jr. and D. G. Frey (eds.), The Quaternary of the United States, pp. 403–416. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Cushing, E. J., 1967. Late-Wisconsin stratigraphy and the glacial sequence in Minnesota. In Cushing, E. J. and H. E. Wright, Jr. (eds.), Quaternary Paleoecology, pp. 59–88. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Davis, M. B., 1967. Late-glacial climate in northern United States: a comparison of New England and the Great Lakes region. In Cushing, E. J. and H. E. Wright, Jr. (eds.), Quaternary Paleoecology, pp. 11–43. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Davis, M. B., 1969. Palynology and environmental history during the Quaternary period. American Scientist 57: 317–332.

    Google Scholar 

  • Davis, M. B., 1976. Pleistocene beogeography of temperate deciduous trees. Geoscience and Man 13: 13–26.

    Google Scholar 

  • Davis, M. B., 1981. Quaternary history and the stability of forest communities. In West, D.C, H. H. Shugart, and D. B. Botkin (eds.), Forest Succession: Concepts and Application, pp. 132–153. Springer-Verlag, New York.

    Google Scholar 

  • Davis, M. B., 1986. Climatic instability, time lags, and community disequilibrium. In Diamond, J. and T. J. Case (eds.), Community Ecology, pp. 269–284. Harper and Row, Publishers, New York.

    Google Scholar 

  • Davis, M. B., K. D. Woods, S. L. Webb, and R. P. Futyma, 1986. Dispersal versus climate:Expansion of Fagus and Tsuga into the Upper Great Lakes region. Vegetatio 67: 93–103.

    Article  Google Scholar 

  • Davis, M. B., L. B. Brubaker, and T. Webb III, 1973. Calibration of absolute pollen influx. In Birks, H. J. B. and R. G. West (eds.), Quaternary Plant Ecology, pp. 9–25. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Davis, M. B., R. W. Spear, and L. C. K. Shane, 1980. Holocene climate of New England. Quaternary Research 14: 240–250.

    Article  Google Scholar 

  • Davis, R. B. and T. Webb III, 1975. The contemporary distribution of pollen in eastern North America: a comparison with the vegetation. Quaternary Research 5: 395–434.

    Article  Google Scholar 

  • Dunwiddie, P. W., 1987. Macrofossil and pollen representation of coniferous trees in modern sediments from Washington. Ecology 68: 1–11.

    Article  Google Scholar 

  • Edwards, A. W. F. and L. L. Cavalli-Sforza, 1964. Reconstruction of evolutionary trees. In Heywood, V. H. and J. McNeill (eds.), Phenetic and Phylogenetic Classification, Systematic Association Publication 6: 67–76.

    Google Scholar 

  • Faegri, K. and J. Iversen, 1975. Textbook of Pollen Analysis. 3rd ed. Hafner Press, New York. 295 pp.

    Google Scholar 

  • Fagerlind, F., 1952. The real signification of pollen diagrams. Botaniska Notiser 1952: 85–224.

    Google Scholar 

  • Gordon, A. D., 1973. Classification in the presence of constraints. Biometrics 29: 821–827.

    Article  Google Scholar 

  • Gordon, A. D., 1980. Methods of constrained classification. In Tomassone, R.(ed.), Analyse de donnees et informatique, Fontainebleau, du 19 au 30 mars 1979, pp. 161–171. Institut National de Recherche en Informatique et en Automatique. Le Chesney, France.

    Google Scholar 

  • Gordon, A. D., 1981. Classification methods for the exploratory analysis of multivariate data. Chapman and Hall, London. 193 pp.

    Google Scholar 

  • Gordon, A. D., 1982. Numerical methods in Quaternary palaeoecology. V. Simultaneous graphical representation of the levels and taxa in a pollen diagram. Review of Paleobotany and Palynology 37: 155–183.

    Article  Google Scholar 

  • Gordon, A. D. and Birks, H. J. B., 1972. Numerical methods in Quaternary palaeoecology I. Zonation of pollen diagrams. New Phytologist 71: 961–979.

    Article  Google Scholar 

  • Grimm, E. C, 1983. Chronology and dynamics of vegetation change in the prairie-woodland region of southern Minnesota, U.S.A. New Phytologist 93: 311–350.

    Article  Google Scholar 

  • Grimm, E. C, 1984. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecological Monographs 54: 291–311.

    Article  Google Scholar 

  • Grimm, E. C, 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geo-sciences 13: 13–35.

    Google Scholar 

  • Hedberg, H. D. (ed.), 1976. International Stratigraphic Guide. John Wiley and Sons, New York.

    Google Scholar 

  • Heide, K. M. and R. Bradshaw, 1982. The pollen-tree relationship within forests of Wisconsin and upper Michigan, U.S.A. Review of Palaeobotany and Palynology 36: 1–23.

    Article  Google Scholar 

  • Heusser, C. J. and S. S. Streeter, 1980. A temperature and precipitation record of the past 16,000 years in southern Chile. Science 210: 1345–1347.

    Article  PubMed  CAS  Google Scholar 

  • Hill, M. O.,1979a. DECORANA - A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill, M. O, 1979b. TWINSPAN - A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of the Individuals and Attributes. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill, M. O. and H. G. Gauch, 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Howe, S. and T. Webb III, 1983. Calibrating pollen data in climatic terms: improving the methods. Quaternary Science Reviews 2: 17–51.

    Article  Google Scholar 

  • Huntley, B. and H. J. B. Birks, 1983. An Atlas of Past and Present Pollen Maps for Europe:0–13000 Years Ago. Cambridge University Press, Cambridge.

    Google Scholar 

  • Iversen, J., 1944. Viscum, Hedera and Ilex as climatic indicators. A contribution to the study of the post-glacial temperature climate. Geologiska Foreningens i Stockholm Forhandlingar 66: 463–483.

    Article  Google Scholar 

  • Jacobson, G. L., Jr. and R. H. W. Bradshaw, 1981. The selection of sites for paleovegeta-tional studies. Quaternary Research 16: 80–96.

    Article  Google Scholar 

  • Jacobson, G. L., Jr. and E. C. Grimm, 1986. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 67: 958–966.

    Article  Google Scholar 

  • Jacobson, G. L., Jr., T. Webb III, and E. C. Grimm, 1987. Patterns and rates of vegetation change during the deglaciation of eastern North America. InRuddiman, W. F. and H. E. Wright, Jr. (eds.), The Decade of North American Geology. Vol K-3. North America and Adjacent Oceans During the Last Deglaciation, The Geological Society of America, Boulder, Colorado.

    Google Scholar 

  • Janssen, C. R., 1966. Recent pollen spectra from the deciduous and coniferous-deciduous forests of northeastern Minnesota: a study in pollen dispersal. Ecology 47: 804–825.

    Article  Google Scholar 

  • Janssen, C. R., 1981. On the reconstruction of past vegetation by pollen analysis: a review. Proceedings, IV International Palynological Conference, Lucknow (1976–77) 3: 163–172.

    Google Scholar 

  • Kutzbach, J. E. and P. J. Guetter, 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. Journal of the Atmospheric Sciences 43: 1726–1759.

    Article  Google Scholar 

  • Lamb, H. F., 1984. Modern pollen spectra from Labrador and their use in reconstructing Holocene vegetational history. Journal of Ecology 72: 37–59.

    Article  Google Scholar 

  • Lamb, H. F., 1985. Palynological evidence for postglacial change in the position of tree limit in Labrador. Ecological Monographs 55: 241–258.

    Article  Google Scholar 

  • Lichti-Federovich, S. and J. C. Ritchie, 1968. Recent pollen assemblages from the western interior of Canada. Review of Palaeobotany and Palynology 7: 297–344.

    Article  Google Scholar 

  • Liu, K.-B. and N. S.-N. Lam, 1985. Paleovegetational reconstruction based on modern and fossil pollen data: an application of discriminant analysis. Annals of the Association of American Geographers 75:115–130.

    Article  Google Scholar 

  • MacDonald, G. M. and J. C. Ritchie, 1986. Modern pollen spectra from the western interior of Canada and the interpretation of late Quaternary vegetation development. New Phytologist 103: 245–268.

    Article  Google Scholar 

  • Matthews, J., 1969. The assessment of a method for the determination of absolute pollen frequencies. New Phytologist 68: 161–166.

    Article  Google Scholar 

  • Mcintosh, R. P., 1985. The Background of Ecology: Concept and Theory. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mueller-Dombois, D. and H. Ellenberg, 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • Overpeck, J. T., T. Webb III, and I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23: 87–108.

    Article  Google Scholar 

  • Prentice, I. C, 1980. Multidimensional scaling as a research tool in Quaternary palynology:a review of theory and methods. Review of Palaeobotany and Palynology 31: 71–104.

    Article  Google Scholar 

  • Prentice, I. C, 1983. Postglacial climatic change: vegetation dynamics and the pollen record. Progress in Physical Geography 7: 273–286.

    Google Scholar 

  • Prentice, I. C, 1986. Multivariate methods for data analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, pp. 775–797. John Wiley and Sons, Chichester.

    Google Scholar 

  • Prentice, I. C, 1986. Vegetation response to past climatic variation. Vegetatio 67: 131–141.

    Article  Google Scholar 

  • Prentice, I. C. and T. Webb III, 1986. Pollen percentages, tree abundances and the Fagerlind effect. Journal of Quaternary Science 1: 35–43.

    Article  Google Scholar 

  • Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235:167–171.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, J. C, 1974. Modern pollen assemblages near the arctic tree line, Mackenzie Delta region, Northwest Territories. Canadian Journal of Botany 52: 381–396.

    Article  Google Scholar 

  • Ritchie, J. C, 1986. Climate change and vegetation response. Vegetatio 67: 65–74.

    Article  Google Scholar 

  • Ritchie, J. C. and G. A. Yarranton, 1978. The late-Quaternary history of the boreal forest of central Canada, based on standard pollen stratigraphy and principal components analysis. Journal of Ecology 66: 199–212.

    Article  Google Scholar 

  • Sachs, H. M., T. Webb III, and D. R. Clark, 1977. Paleoecological transfer functions. Annual Review of Earth and Planetary Science 5: 159–178.

    Article  Google Scholar 

  • Stevenson, A. C, 1984. Studies in the vegetational history of S. W. Spain. III. Palynological investigations at El Asperillo, Huelva. Journal of Biogeography 11: 527–551.

    Article  Google Scholar 

  • Stevenson, A. C, 1985. Studies in the vegetational history of S. W. Spain. I. Modern pollen rain in the Dohana National Park, Huelva. Journal of Biogeography 12: 243–268.

    Article  Google Scholar 

  • Szafer, W., 1935. The significance of isopollen lines for the investigation of geographical distribution of trees in the post-glacial period. Bulletin International de PAcademie Polonaise des Sciences et des Lettres, Classe des Sciences Mathemathiques et Na-turelles, Serie B, Sciences Naturelles I, Botanique 1935: 235–239.

    Google Scholar 

  • Ter Braak, C. J. F., 1983. Principal components biplots and alpha and beta diversity. Ecology 64: 454–462.

    Article  Google Scholar 

  • Von Post, L., 1946. The prospect for pollen analysis in the study of the earth’s climatic history. New Phytologist 45: 193–217.

    Article  Google Scholar 

  • Waddington, J. C. B., 1969. A stratigraphic record of the pollen influx to a lake in the Big Woods of Minnesota. Geological Society of America Special Paper 123: 263–282.

    Google Scholar 

  • Walker, D. and Y. Pettelkow, 1981. Some applications of the independent treatment of taxa in pollen analysis. Journal of Biogeography 8: 37–51.

    Article  Google Scholar 

  • Webb, T., III, 1974. Corresponding patterns of pollen and vegetation in lower Michigan: a comparison of quantitative data. Ecology 55: 17–28.

    Article  Google Scholar 

  • Webb, T., III, 1986. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67: 75–91.

    Article  Google Scholar 

  • Webb, T., III and R. A. Bryson, 1972. Late- and post-glacial climatic change in the northern Midwest, USA: quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research 2: 70–115.

    Article  Google Scholar 

  • Webb, T., III and D. R. Clark, 1977. Calibrating micropaleontological data in climatic terms: a critical review. Annals of the New York Academy of Sciences 288: 93–118.

    Article  Google Scholar 

  • Webb, T., III, E. J. Cushing, and H. E. Wright, Jr., 1983. Holocene changes in the vegetation of the Midwest. In Wright, H. E., Jr. (ed.), Late-Quaternary Environments of the United States. Vol. 2. The Holocene, pp. 142–165. University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Webb, T., III, S. E. Howe, R. H. W. Bradshaw, and K. M. Heide, 1981. Estimating plant abundances from pollen percentages: the use of regression analysis. Review of Paleobotany and Palynology 34: 269–300.

    Article  Google Scholar 

  • Webb, T., III, R. A. Laseski, and J. C. Bernabo, 1978. Sensing vegetational patterns with pollen data: choosing the data. Ecology 59: 1151–1163.

    Article  Google Scholar 

  • Webb, T., III and J. H. McAndrews, 1976. Corresponding patterns of contemporary pollen and vegetation in central North America. Geological Society of America Memoir 145: 267–299.

    Google Scholar 

  • Winkler, M. G., A. M. Swain, and J. E. Kutzbach, 1986. Middle Holocene dry period in the northern midwestern United States: lake levels and pollen stratigraphy. Quaternary Research 25: 235–250.

    Article  Google Scholar 

  • Wright, H. E., Jr., 1967. The use of surface samples in Quaternary pollen analysis. Review of Paleobotany and Palynology 2: 321–330.

    Article  Google Scholar 

  • Wright, H. E., Jr. and H. L. Patten, 1963. The pollen sum. Pollen et Spores 5: 445–450.

    Google Scholar 

  • Wright, H. E., Jr., T. C. Winter, and H. L. Patten, 1963. Two pollen diagrams from southeastern Minnesota: problems in the regional late-glacial and postglacial vegetational history. Geological Society of America Bulletin 74: 1371–1396.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grimm, E.C. (1988). Data analysis and display. In: Huntley, B., Webb, T. (eds) Vegetation history. Handbook of vegetation science, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3081-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3081-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7884-9

  • Online ISBN: 978-94-009-3081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics