Skip to main content

Compositionally Graded Semiconductors and their Device Applications

  • Chapter
  • 750 Accesses

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 1))

Abstract

This paper reviews the electronic transport properties of compositionally graded materials. Band gap grading is a powerful tool for engineering the energy band diagram of a device and thus modifying its electrical transport properties (band gap engineering) (1). The most interesting property, which has far reaching consequences for devices made of these materials, is that electrons and holes experience different electric forces so the transport properties of the two types of carriers can be independently tuned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Capasso, F. 1983. J. Vac. Sci. Technol. B 1: 457–61

    Article  Google Scholar 

  2. Cho, A. Y., Arthur, J. R. 1975. Progr. Solid State Chem. 10: 157

    Article  Google Scholar 

  3. Kroemer, H. 1957. RCA Rev. 18: 332

    Google Scholar 

  4. Miller, R. C., Kleinman, D. A., Gossard, A. C., Munteanu, O. 1984. Phys. Rev. B 29:7085

    Article  ADS  Google Scholar 

  5. Hutchby, J. A. 1978. J. Appi. Phys. 49: 4041–46

    Article  ADS  Google Scholar 

  6. Levine, B. F., Tsang, W. T., Bethea, C. G., Capasso, F. 1982. Appi Phys. Lett. 41: 470–72

    Article  ADS  Google Scholar 

  7. Levine, B. F., Bethea, C. G., Tsang, W. T., Capasso, F., Thornber, K. K., et al. 1983. Appi. Phys. Lett. 42: 769–71

    Article  ADS  Google Scholar 

  8. Capasso, F., Tsang, W. T., Bethea, C. G., Hutchinson, A. L., Levine, B. F. 1983. Appi. Phys. Lett. 42: 93–95

    Article  ADS  Google Scholar 

  9. Kroemer, H. 1983. J. Vac. Sci. Technol. B 1: 126–29

    Article  Google Scholar 

  10. Hayes, J. R., Capasso, F., Gossard, A. C., Malik, R. J., Wiegmann, W. 1983. Electron. Lett. 19: 410–11

    Article  Google Scholar 

  11. Miller, D. L., Asbeck, P. M., Anderson, R. J., Eisen, F. H. 1983. Electron. Lett. 19: 367–68

    Article  ADS  Google Scholar 

  12. Malik, R. J., Capasso, F., Stall, R. A., Kiehl, R. A., Wunder, R., Bethea, C. G. 1985. Appi Phys. Lett. 46: 600–2

    Article  ADS  Google Scholar 

  13. Malik, R. J., Hayes, J. R., Capasso, F., Alavi, K., Cho, A. Y. 1983. IEEE Electron. Devices Lett. 4: 383–85

    Article  ADS  Google Scholar 

  14. People, R., Wecht, K. W., Alavi, K., Cho, A. Y. 1983. Appi Phys. Lett. 43: 118–20

    Article  ADS  Google Scholar 

  15. Hayes, J. R., Capasso, F., Malik, R. J., Gossard, A. C., Wiegmann, W. 1983. Appl. Phys. Lett. 43:949–51

    Article  ADS  Google Scholar 

  16. Tsang, W. T. 1981. Appl. Phys. Lett. 39: 134–37

    Article  ADS  Google Scholar 

  17. Holonyak, N. Jr., Kolbas, R. M., Dupuis, R. D., Dapkus, P. D. 1980. IEEE J. Quantum Electron. 16: 134–37

    Article  Google Scholar 

  18. Kazarinov, R. F., Tsarenkov, G. V. 1976. SOD. Phys. Semicond. 10: 178–82

    Google Scholar 

  19. Woodall, J. M., Hovel, H. J. 1977. Appl Phys. Lett. 30:492–93

    Article  ADS  Google Scholar 

  20. Capasso, F., Tsang, W. T., Hutchinson, A. L., Foy, P. W. 1982. Proc. 1981 Symp. GaAs and Related Compounds, Oiso, Inst. Phys. Conf. Ser. 63, pp. 473–78. London: Inst. Phys.

    Google Scholar 

  21. Mclntyre, R. J. 1966. IEEE Trans. Electron. Devices 13: 164–68

    Article  Google Scholar 

  22. Price, P. J. 1981. IEEE Trans. Electron. Devices 28: 911–14

    Article  Google Scholar 

  23. Allyn, C. L., Gossard, A. C., Wiegmann, W. 1980. Appl Phys. Lett. 36: 373–76

    Article  ADS  Google Scholar 

  24. Gossard, A. C., Brown, W., Allyn, C. L., Wiegmann, W. 1982. J. Vac. Sci. Technol 20: 694–700

    Article  ADS  Google Scholar 

  25. Capasso, F., Luryi, S., Tsang, W. T., Bethea, C. G., Levine, B. F. 1983. Phys. Rev. Lett. 51: 2318–21

    Article  ADS  Google Scholar 

  26. Capasso, F., Williams, G. F., Tsang, W. T. 1982. Tech. Digest IEEE Specialist Conf. on Light Emitting Diodes and Photodetectors, Ottawa, Hull, pp. 166- 67

    Google Scholar 

  27. Capasso, F., Tsang, W. T. 1982. Tech. Digest Intern. Electron. Devices Meet., Washington, D.C., pp. 334–37

    Google Scholar 

  28. Capasso, F. 1983. IEEE Trans. Nucl. Sei. 30:424–28

    Article  ADS  Google Scholar 

  29. Capasso, F. 1983. Surf. Sei. 132: 527- 39

    Article  ADS  Google Scholar 

  30. Capasso, F., Tsang, W. T., Williams, G.F. 1983. IEEE Trans. Electron. Devices 30:381–90

    Article  ADS  Google Scholar 

  31. Cooper, J. A. Jr., Capasso, F., Thornber, K. K. 1982. IEEE Electron. Devices Leti. 3: 402–8

    ADS  Google Scholar 

  32. Capasso, F., Tsang, W. T., Hutchinson, A. L., Williams, G. F. 1982. Appi. Phys. Leti. 40: 38–40

    Article  ADS  Google Scholar 

  33. Kawabe, M., Matsuuza, N., Inuzuka, H. 1982. Jpn J. Appi. Phys. 21: L447- 48

    Article  ADS  Google Scholar 

  34. Miller, R. C., Kleinman, D. A., Gossard, A. C. 1984. Phys. Rev. B 29: 7085

    Article  ADS  Google Scholar 

  35. Capasso, F., Cox, H. M., Hutchinson, A. L., Olsson, N. A., Hummel, S. G. 1984. Appi. Phys. Lett. 45: 1193–95

    Article  ADS  Google Scholar 

  36. Cox, H. M. 1984. Cryst. Growth 69: 641–42

    Article  ADS  Google Scholar 

  37. Capasso, F., Cho, A. Y., Foy, P. W. 1984. Electron. Lett. 20: 635–37

    Article  ADS  Google Scholar 

  38. Forrest, S. R., Kim, O. K., Smith, R. G. 1982. Appi. Phys. Lett. 41: 95–97

    Article  ADS  Google Scholar 

  39. Campbell, J., Dentai, A. G., Holden, W.S., Kasper, B. L. 1983. Electron. Lett.19:818–20

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Editoriale Jaca Book Spa, Milano

About this chapter

Cite this chapter

Capasso, F. (1988). Compositionally Graded Semiconductors and their Device Applications. In: Margaritondo, G. (eds) Electronic Structure of Semiconductor Heterojunctions. Perspectives in Condensed Matter Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3073-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3073-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2824-1

  • Online ISBN: 978-94-009-3073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics