Skip to main content

A Bird’s-Eye View on the Evolution of Semiconductor Superlattices and Quantum Wells

  • Chapter
Electronic Structure of Semiconductor Heterojunctions

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 1))

Abstract

Following the past seventeen-year developmental path in the research of semiconductor superlattices and quantum wells, significant milestones are presented with emphasis on experimental investigations in the device physics of reduced dimensionality performed in cooperation with the materials science of heteroepitaxial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, “Superlattice and negative conductivity in semiconductors,” IBM Res. Note, RC-2418, Mar. 1969.

    Google Scholar 

  2. L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop. pp. 61–65, Jan. 1970.

    Google Scholar 

  3. D. Bohm, Quantum Theory. Englewood Cliffs, NJ: Prentice-Hall, 1951, p. 283.

    Google Scholar 

  4. L. Esaki, “Long journey into tunneling,” in Les Prix Nobel en 1973. Stockholm, Sweden: Imprimerie Royale, P. A. Norstedt & Soner, 1974, pp. 66–83.

    Google Scholar 

  5. R. de L. Kronig and W. J. Penny, “Quantum mechanics of electrons in crystal lattices,” Proc. Roy. Soc. vol. ABO, pp. 499–513, 1930.

    Google Scholar 

  6. R. G. Chambers, “The kinetic formulation of conduction problems,” in Proc. Phys. Soc. London, vol. A65, pp. 458–459, 1952.

    ADS  Google Scholar 

  7. L. Esaki, L. L. Chang, and R. Tsu, “A one-dimensional “super-lattice” in semiconductors,” in Proc. 12th Int. Conf. Low Temp. Phys. Kyoto, Japan, 1970, pp. 551–553.

    Google Scholar 

  8. A. E. Blakeslee and C. F Aliotta, “Man-made superlattice crystals,” IBM J. Res. Develop., vol. 14, pp. 686–688, Nov. 1970.

    Article  Google Scholar 

  9. See the review of strained-layer superlattices by G. C. Osbourn, P. L. Fourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, and T. E. Zipperian, in Semiconductor and Semimetals R. K. Willardson and A. C. Beer, Eds. New York: Academic, to be published.

    Google Scholar 

  10. L. Esaki, L. L. Chang, W. E. Howard, and V. L. Rideout, “Transport properties of a GaAs-GaAlAs superlattice,” in Proc. 11th Int. Conf. Phys. Semiconductors, Warsaw, Poland, 1972, pp. 431–436.

    Google Scholar 

  11. R. Tsu and L. Esaki, “Nonlinear optical response of conduction electrons in a superlattice,” Appl. Phvs. Lett., vol. 19, pp. 246–248, Oct. 1971.

    Article  ADS  Google Scholar 

  12. U. Gnutzmann and K. Clauseker, “Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure,” Appl. Phys. vol. 3, pp. 9–14, 1974.

    Article  ADS  Google Scholar 

  13. L. Esaki, “Semiconductor superlattices and quantum wells,” in Proc. 17th Int. Conf. Semiconductors San Francisco, CA, Aug. 1984, pp. 473–483;

    Google Scholar 

  14. L. Esaki “Semiconductor superlattices and quantum wells through development of molecular beam epitaxy,” in Molecular Beam Epitaxy and Heterostructures L. L. Chang and K. Ploog, Eds. Dordrecht, The Netherlands: Nijhoff, 1985, pp. 1–36;

    Google Scholar 

  15. L. Esaki “History and perspective of semiconductor superlattices,” in Synthetic Modulated Structures by L. L. Chang and B. C. Giessen, Eds. Orlando, FL: Academic Press. 1985, pp. 3–41;

    Google Scholar 

  16. L. Esaki “Compositional superlattices,” in The Technology and Physics of Molecular Beam Epitaxy E. H. C. Parker. Ed. New York: Plenum, 1985, pp. 143–184.

    Google Scholar 

  17. A. Y. Cho, “Growth of periodic structures by the molecular-beam method,” Appl. Phys. Lett. vol. 19, pp. 467–468, 1971.

    Article  ADS  Google Scholar 

  18. J. H. Neave, B. A. Joyce. P. J. Dobson, and N. Norton, “Dynamics of film growth of GaAs by MBE from Rheed observations,” Appl. Phys. vol. A31, pp. 1–8, 1983.

    ADS  Google Scholar 

  19. M. B. Panish and S. Sumski, J. Appl. Phvs., vol. 55, pp. 3571–3576, May 1984.

    Article  ADS  Google Scholar 

  20. M. Razeghi and J. P. Duchemin, “Recent advances in MOCVD growth of InxGa1_xAsvP1_yalloys,” J. Cryst. Growth, vol. 70, pp. 145–149, 1984.

    Article  ADS  Google Scholar 

  21. W. T. Tsang, “Chemical beam eiptaxy of InP and GaAs,” Appl. Phys. Lett. vol. 45, pp. 1234–1236, Dec. 1984.

    Article  ADS  Google Scholar 

  22. H. Fujiyasu, H. Takahashi, H. Shimizu, and A. Sasaki, “Optical properties of ZnS-ZnSe superlattices prepared by a HWE,” in Proc. 17th Int. Conf. Phys. Semiconductors San Francisco, CA, Aug. 1984, pp. 539–542.

    Google Scholar 

  23. M. Pessa and O. Jylha, “Growth of Cd1_xMnxTe films with 0 < x< 0.9 by atomic layer epitaxy,” Appl. Phxs. Lett., vol. 45, pp. 646–648, Sept., 1984.

    Article  ADS  Google Scholar 

  24. Most numerical data obtained fromLandolt-Bornstein, New Series vol. 17, Berlin: Springer-Verlag.

    Google Scholar 

  25. R. People, L. W. Wecht, K. Alavi, and A. Y. Cho “Measurement of the conduction-band discontinuity of molecp’ar beam epitaxial grown In0 52A10 48As/In0 5iGa047AS, N-nheterojunction by C-Vprofiling,” Appl. Phys. Lett. vol. 43, pp. 118–120, July 1983.

    Article  ADS  Google Scholar 

  26. K. Y. Cheng, A. Y. Cho, and W. R. Wagner, “Molecular-beam epitaxial growth of uniform Ga 0 .4 7In0 53As with a rotating sample holder,” Appl. Phys. Lett. vol. 39, pp. 607–609, Oct. 1981.

    Article  ADS  Google Scholar 

  27. M. Razeghi and J. P. Duchemin, “Low pressure-MOCVD growth of Gao 47In0 53As-lnP heterojunction and superlattices,” J. Vac. Sci. Technol. B, vol. 1, pp. 262–265, Apr.-June 1983.

    Article  Google Scholar 

  28. M. Voos, “Electronic properties of MO-CVD grown InGaAs-InP heterojunctions and superlattices,” J. Vac. Sci. Technol. B, vol. 1, pp. 404–408, Apr.-June 1983.

    Article  Google Scholar 

  29. E. J. Caine, S. Subbanna, H. Kromer, J. L. Merz, and A. Y. Cho, “Staggered-lineup heterojunctions as sources of tunable below-gap radiation: Experimental verification,” Appl. Phys. Lett. vol. 45, pp. 1123–1125, Nov. 1984.

    Article  ADS  Google Scholar 

  30. P. M. Petrof, A. C. Gossard, A. Savage, and W. Wiegmann, “Molecular beam epitaxy of Ge and Ga, _, AlrAs ultra thin-film super-lattices,” J. Cryst. Growth vol. 46, pp. 172–178, 1979.

    Article  ADS  Google Scholar 

  31. C.-A. Chang, A. Segmuller, L. L. Chang, and L. Esaki, “Ge-GaAs superlattices by molecular beam epitaxy,” Appl. Phys. Lett. vol. 38, pp. 912–914, June 1981.

    Article  ADS  Google Scholar 

  32. J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. vol. 34, pp. 663–665, May 1979.

    Article  ADS  Google Scholar 

  33. G. Bastard, “Theoretical investigations of superlattice band structure in the envelope-function approximation,” Phys. Rev. B vol. 25, pp. 7584–7597, June 1982.

    Article  ADS  Google Scholar 

  34. J. P. Faurie, A. Million, and J. Piaguet, “CdTe-HgTe multilayers grown by molecular beam epitaxy,” Appl. Phvs. Lett. vol. 41, pp. 713–715, Oct. 1982.

    Article  ADS  Google Scholar 

  35. H. Kinoshita and H. Fujiyasu, “PbTe-Pb, _ vSnvTe superlattices prepared by a hot wall technique,” J. Appl. Phvs.vol. 51, pp. 5845–5846, Nov. 1980.

    Article  ADS  Google Scholar 

  36. E. F. Fantner and G. Bauer, Two-Dimensional Systems, Heterostructures, and SuperlatticesG. Bauer, F. Kuchar and H. Heinrich, Eds. Berlin: Springer 1984, p. 207.

    Google Scholar 

  37. S. Fujita, Y. Matsuda, and A. Sasaki, “Blue luminescence of a ZnSe-ZnS0, Se() Qstrained-layer superlattice on a GaAs substrate grown by low-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett. vol. 47, pp. 955–957, Nov. 1985.

    Article  ADS  Google Scholar 

  38. M. Kobayashi, N. Mino, H. Katagiri, R. Kimura, M. Konagai, and K. Takahashi, “Growth of a ZnSe-ZnTe strained-layer superlattice on an InP substrate by molecular beam epitaxy,” Appl. Phvs. Lett. vol. 48, pp. 296–297, Jan. 1986.

    Article  ADS  Google Scholar 

  39. R. N. Bicknell, R. W. Yanka, N. C. Giles-Taylor, D. K. Blanks, E. L. Buckland, and J. F. Schetzina, “Cd, _ vMn(Te-CdTe multilayers grown by molecular beam epitaxy,” Appl. Phvs. Lett. vol. 45, pp. 92–94, July 1984.

    Article  ADS  Google Scholar 

  40. L. A. Kolodziejski, T. C. Bonsett, R. L. Gunshor, S. Datta, R. B. Bylsma, W. M. Becker, and N. Otsuka, “Molecular beam epitaxy of diluted magnetic semiconductor (Cd, _ vMn(Te) superlattices,” Appl. Phys. Lett., vol. 45, pp. 440–442, Aug., 1984.

    Article  ADS  Google Scholar 

  41. L. A. Kolodziejski, R. L. Gunshor, T. C. Bonsett, R. Venkatasu-bramanian, S. Datta, R. B. Bylsma, W. M. Becker, and N. Otsuka, “Wide gap II-VI superlattices of ZnSe-Zn,. rMn, Se,” Appl. Phvs. Lett. vol. 47. pp. 169–171, July 1985.

    Article  ADS  Google Scholar 

  42. R. H. Bube, Electronic Properties of Crystalline Solids.New York: Academic, 1974, p. 200.

    Google Scholar 

  43. H. Sakaki, L. L. Chang, R. Ludeke, C.-A. Chang, G. A. Sai-Hal-asz, and L. Esaki, “In, _.Ga.As-GaSb,. vAsvheterojunctions by molecular beam epitaxy,” Appl. Phvs. Lett. vol. 31, pp. 211–213, Aug. 1977.

    Article  ADS  Google Scholar 

  44. H. Kromer, “Barrier control and measurements: Abrupt semiconductor heterojunctions,” J. Vac. Sci. Technol. B, vol. 2, pp. 433–439, July-Sept. 1984.

    Article  Google Scholar 

  45. M. L. Cohen, “Electrons at interfaces,” in Advances in Electronics and Electron Phvsics, Vol. 51. New York: Academic. 1980, pp. 1–62.

    Google Scholar 

  46. W. A. Harrison, “Elementary theory of heterojunctions,” J. Vac. Sci. Technol., vol. 14, pp. 1016–1021, July/Aug. 1977.

    Article  ADS  Google Scholar 

  47. W. R. Frensley and H. Kromer, “Theory of the energy-band lineup at an abrupt semiconductor heterojunction,” Phys. Rev. B vol. 16, pp. 2642–2652, Sept. 1977.

    Article  ADS  Google Scholar 

  48. J. Tersoff, “Theory of semiconductor heterojunctions: The role of quantum dipoles,” Phys. Rev. B, vol. 30, pp. 4874–4877, Oct., 1984;

    Article  ADS  Google Scholar 

  49. J. Tersoff “Schottky barrier heights and the continuum of GaP states,” Phys. Rev. Lett. vol. 52, pp. 465–468, 1984.

    Article  ADS  Google Scholar 

  50. G. Bastard, “Superlattice band structure in the envelope-function approximation,” Phys. Rev. B vol. 24, pp. 5693–5697, Nov. 1981.

    Article  ADS  Google Scholar 

  51. S. R. White and L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phvs. Rev. Lett., vol. 47. pp. 879–882, Sept. 1981.

    Article  ADS  Google Scholar 

  52. G. Duggan, “A critical review of heterojunction band offsets,” J. Vac. Sci. Technol. B, vol. 3, pp. 1224–1230, July/Aug. 1985.

    Article  Google Scholar 

  53. R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin Al, Ga, rAs-GaAs-AlvGa, _ rAs heterostructures,” Phys. Rev. Lett. vol. 33, pp. 827–830, Sept. 1974.

    Article  ADS  Google Scholar 

  54. R. Dingle, A. C. Gossard, and W. Wiegmann, “Direct observation of superlattice formation in a semiconductor heterostructure,” Phys. Rev. Lett. vol. 34, pp. 1327–1330, May 1975.

    Article  ADS  Google Scholar 

  55. R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteanu, “Parabolic quantum wells with the GaAs-AlvGa, _ tAs system,” Phys. Rev. B. vol. 29, pp. 3740–3743, Mar. 1984.

    Article  ADS  Google Scholar 

  56. R. C. Miller, D. A. Kleinman, and A. C. Gossard, “Energy-gap discontinuities and effective mases for GaAs-Al.Ga, _ tAs quantum wells,” Phys. Rev. B vol. 29, pp. 7085–7087, June 1984.

    Article  ADS  Google Scholar 

  57. T. W. Hickmott, P. M. Solomon, R. Fischer, and H. Morko, “Negative charge, barrier heights, and the conduction-band discon-tinuiy in AlrGa, _ tAs capacitors,” J. Appl. Phys. vol. 57, pp. 2844–2853, Apr. 1985.

    Article  ADS  Google Scholar 

  58. W. I. Wang, E. E. Méndez, and F. Stern, “High mobility hole gas and valence-band offset in modulation-doped p-AlGaAs/GaAs heterojunctions,” Appl. Phys. Lett. vol. 45, pp. 639–641, Sept. 1984.

    Article  ADS  Google Scholar 

  59. W. I. Wang and F. Stern, “Valence band offset in AlAs/GaAs het-erojunctions and the empirical relation for band alignment,” J. Vac. Sci. Technol. B, vol. 3, pp. 1280–1284, Jul./Aug. 1985.

    Google Scholar 

  60. P. Dawson, G. A. Wilson, C. W. Tu, and R. C. Miller, “Staggered band alignments in AlGaAs heterojunctions and the determination of valence-band offsets,” Appl. Phys. Lett. vol. 48, pp. 541–543, Feb. 1986.

    Article  ADS  Google Scholar 

  61. R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl. Phys. Lett. vol. 22, pp. 562–564, June 1973.

    Article  ADS  Google Scholar 

  62. L. L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semiconductor qdouble barriers,” Appl. Phys. Lett., vol. 24, pp. 593–595, June 1974.

    Article  ADS  Google Scholar 

  63. L. Esaki and L. L. Chang, “New transport phenomenon in a semiconductor ‘superlattice,’” Phys. Rev. Lett. vol. 33, pp. 495–497, Aug. 1974.

    Article  ADS  Google Scholar 

  64. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Phys. Rev. Lett., vol. 43, pp. 558–590, Sept. 1983.

    Google Scholar 

  65. T. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, and W. D. Goodhue, “Quantum well oscillators,” Appl. Phys. Lett. vol. 45, pp. 1319–1321, Dec. 1984.

    Article  ADS  Google Scholar 

  66. T. J. Shewchuk, P. C. Chapin, P. D. Coleman, W. Kopp, R. Fisher, and H. Morko, “Resonant tunneling oscillations in a GaAs-AlrGa, _ tAs heterostructure at room temperature,” Appl. Phys. Lett. vol. 46, pp. 508–510, Mar. 1985.

    Article  ADS  Google Scholar 

  67. T. C. L. G. Sollner, H. Q. Le, C. A. Correa, and W. D. Goodhue, “Persistent photoconductivity in quantum well resonators,” Appl. Phys. Lett. vol. 47, pp. 36–39, July 1985.

    Article  ADS  Google Scholar 

  68. D. D. Coon and H. C. Liu, “Tunneling currents and two-body effects in quantum well and superlattice structures,” Appl. Phys. Lett. vol. 47, pp. 172–174, July 1985.

    Article  ADS  Google Scholar 

  69. S. Luryi and F. Capasso, “Resonant tunneling of two-dimensional electrons through a quantum wire: A negative transconductance device,” Appl. Phys. Lett. vol. 47, pp. 1347–1349, Dec. 1985.

    Article  ADS  Google Scholar 

  70. F. Capasso, K. Mohanned, and A. Y. Cho, “Sequential resonant tunneling through a multiquantum well superlattice,” Appl. Phys. Lett. vol. 48, pp. 478–480, Feb. 1986.

    Article  ADS  Google Scholar 

  71. E. E. Méndez, L. Esaki, and W. I. Wang, “Resonant magnetotun-neling in GaAlAs-GaAs-GaAlAs heterostructures,” Phys. Rev. B vol. 33, pp. 2893–2896, Feb. 1986.

    Article  ADS  Google Scholar 

  72. E. E. Méndez, W. I. Wang, B. Ricco, and L. Esaki, Appl. Phys. Lett. vol. 47, pp. 415–417, Aug. 1985.

    Article  ADS  Google Scholar 

  73. R. A. Davis, M. J. Kelly, and T. M. Kerr, “Tunneling between two strongly coupled superlattices,” Phys. Rev. Lett., vol. 55, pp. 1114–1116, Sept. 1985.

    Article  ADS  Google Scholar 

  74. R. Tsu, L. L. Chang, G. A. Sai-Halasz, and L. Esaki, “Effects of quantum states on the photocurrent in a superlattice,” Phys. Rev. Lett. vol. 34, pp. 1509–1511, June 1975.

    Article  ADS  Google Scholar 

  75. J. P. van der Ziel, R. Dingle, R. C. Miller, W. Wiegmann, and W. A. Nordland Jr., “Laser oscillation from quantum states in very thin GaAs-Alo2Gao8As multilayer structures,” Appl. Phys. Lett. vol. 26, pp. 463–465, Apr. 1975.

    Article  ADS  Google Scholar 

  76. R. D. Dupuis, P. D. Dapkus, N. Holonyak Jr., E. A. Rezek, and R. Chin, “Room-temperature laser operation quantum-well Ga, _ jAljAs-GaAs laser diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett, vol. 32, pp. 295–297, Mar. 1978.

    Article  ADS  Google Scholar 

  77. N. Holonyak Jr., R. M. Kolbas, E. A. Rezek, R. Chin, R. D. Dupuis, and P. D. Dapkus, “Bandfilling in metalorganic chemical vapor deposited AlxGa1_ xAs-GaAs-Al, Ga, _ xAs quantum-well heterostructure lasers,” J. Appl. Phys. vol. 49, pp. 5392–5397, Nov. 1978.

    Article  ADS  Google Scholar 

  78. W. T. Tsang, “Extremely low threshold (AlGa) As modified multiquantum well heterostructure lasers grown by molecular-beam epitaxy,” Appl. Phys. Lett. vol. 39, pp. 786–788, Nov. 1981.

    Article  ADS  Google Scholar 

  79. W. T. Tsang, “Gasino 53As/InP multiquantum well heterostructure lasers grown by molecular beam epitaxy operating at 1.53 /µm,” Appl. Phys. Lett. vol. 44, pp. 288–290, Feb. 1984.

    Article  ADS  Google Scholar 

  80. N. K. Dutta, S. G. Napholtz, R. Yen, R. Wessel, T. M. Shen, and N. A. Olsson, “Long wavelength InGaAsP (λ ~ 1.3 /µm) modified multiquantum well laser,” Appl. Phys. Lett., vol. 46, pp. 1036–1039, June 1985.

    Article  ADS  Google Scholar 

  81. R. C. Miller, D. A. Kleinman, W. A. Nordland Jr., and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AljGa, _, As multilayer structures,” Phys. Rev. B vol. 22, pp. 863–871, July 1980.

    Article  ADS  Google Scholar 

  82. P. M. Petroff, C. Weisbuch, R. Dingle, A. C. Gossard, and W. Wiegmann, “Luminescence properties of GaAs-Ga, _, Al, As double heterostructures and multiquantum-well superlattices grown by molecular beam epitaxy,” Appl. Phys. Lett. vol. 38, pp. 965–967, June 1981.

    Article  ADS  Google Scholar 

  83. B. A. Vojak, N. Holonyak, Jr, W. D. Laidig, K. Hess, J. J. Coleman, and P. D. Dapkus, “The exciton in recombination in AltGa, _ rAs-GaAs quantum-well heterostructures,” Solid State Commun. vol. 35, pp. 477–481, 1980.

    Article  ADS  Google Scholar 

  84. E. E. Méndez, G. Bastard, L. L. Chang, and L. Esaki, “Effect of an electric field on the luminescence of GaAs quantum wells,” Phys. Rev. B vol. 26, pp. 7101–7103, Dec. 1982.

    Article  ADS  Google Scholar 

  85. R. C. Miller and A. C. Gossard, “Some effects of a longitudinal electric field on the photoluminescence of p-doped GaAs-AltGa, _ tAs quantum well heterostructures,” Appl. Phys. Lett. vol. 43, pp. 954–956, Nov. 1983.

    Article  ADS  Google Scholar 

  86. J. A. Kash, E. E. Méndez, and H. Morkoç, “Electric field induced decrease of photoluminescence lifetime in GàAs quantum wells,” Appl. Phys. Lett. vol. 46, pp. 173–175, Jan. 1985.

    Article  ADS  Google Scholar 

  87. H. J. Polland, L. Schultheis, J. Kuhl, E. O. Gôbel, and C. W. Tu, “Lifetime enhancement of two-dimensional excitons by the quantum-confined Stark effect,” Phys. Rev. Lett. vol. 55, pp. 2610–2613, Dec. 1985.

    Article  ADS  Google Scholar 

  88. D. S. Chemla, T. C. Damen, C. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Electroabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures,” Appl. Phys. Lett. vol. 42, pp. 864–866, May 1983.

    Article  ADS  Google Scholar 

  89. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2176, Nov. 1984;

    Article  ADS  Google Scholar 

  90. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B vol. 32, pp. 1043–1060, July 1985.

    Article  ADS  Google Scholar 

  91. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W, Wiegmann, “High-speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure,” Appl. Phys. Lett. vol. 44, pp. 16–18, Jan. 1983.

    Article  ADS  Google Scholar 

  92. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett. vol. 45, pp. 13–15, July 1984.

    Article  ADS  Google Scholar 

  93. H.-J. Polland, Y. Horikoshi, R. Hôger, E. O. Gôbel, J. Kuhl, and K. Ploog, “Influence of electric fields on the hot carrier kinetics in AlGaAs/GaAs quantum wells,” in Proc. 4th Int. Conf. Hot Electrons Semiconductors Innsbruck, Austria, July 1985, to be published in Physica B.

    Google Scholar 

  94. R. T. Collins, K. von Klitzing, and K. Ploog, “Photocurrent spectroscopy of GaAs/AlGaAs quantum wells in an electric field,” Phys. Rev. B. vol. 33, pp. 4378–4381, Mar. 1986.

    Article  ADS  Google Scholar 

  95. Y. Matsumoto, S. Tarucha, and H. Okamoto, “Tunneling dynamics of photo-generated carriers in semiconductor superlattices,” Phys. Rev. B. vol. 33, pp. 5961–5964, Apr. 1986.

    Article  ADS  Google Scholar 

  96. L. Vina, R. T. Collins, E. E. Méndez, and W. I. Wang, “Electric field effects on GaAs/GaAlAs quantum wells measured by photo-luminescence and photocurrent spectroscopy,” Phys. Rev. B. vol. 33, pp. 5939–5942, Apr. 1986.

    Article  ADS  Google Scholar 

  97. C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink, and M. Erman, “Measurements of electri-field-induced energy-level shifts in GaAs single-quantum-wells using electroreflectance,” Solid State Commun. vol. 53, pp. 457–460, 1985.

    Article  ADS  Google Scholar 

  98. G. Bastard, E. E. Méndez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B vol. 28, pp. 3241–3245, Sept. 1983.

    Article  ADS  Google Scholar 

  99. E. J. Austin and M. Jaros, “Electronic structure of an isolated GaAs-GaAlAs quantum well in a strong electric field,” Appl. Phys. Lett. vol. 31, pp. 5569–5572, Apr. 1985.

    Google Scholar 

  100. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, and A. L. Hutchinson, “New quantum photoconductivity and large photocurrent gain be effective-mass filtering in a forward-biased superlattice p-n junction,” Phys. Rev. Lett. vol. 55, pp. 1152–1155, Sept. 1985.

    Article  ADS  Google Scholar 

  101. P. Manuel, G. A. Sai-Halasz, L. L. Chang, Chin-An Chang, and L. Esaki, “Resonant Raman scattering in a semiconductor superlattice,” Phys. Rev. Lett. vol. 37, pp. 1701–1704, Dec 1976.

    Article  ADS  Google Scholar 

  102. E. Burstein, A. Pinczuk, and S. Buchner, “Resonance inelastic light scattering by charge carriers at semiconductor surfaces,” in Physics of Semiconductors 1978, Institute of Physics Conference Series, no. 43. London: The Institute of Physics, 1979, pp. 1231–1234.

    Google Scholar 

  103. G. Abstreiter and K. Ploog, “Inelastic light scattering from a quasi-two-dimensional electron system in GaAs-AlxGa, _xAs heterojunc-tions,” Phys. Rev. Lett. vol. 42, pp. 1308–1311, May 1979.

    Article  ADS  Google Scholar 

  104. A. Pinczuk, H. L. Stormer, R. Dingle, J. M. Worlock, W. Wiegmann, and A. C. Gossard, “Observation of intersubband excitations in a multilayer two-dimensional electron gas,” Solid State Com-mun. vol. 32, pp. 1001–1003, 1979.

    Article  ADS  Google Scholar 

  105. R. Sooryakumar, A. Pinczuk, A. Gossard, and W. Wiegmann, “Dispersion of collective intersubband excitations in semiconductor superlattices,” Phys. Rev. B vol. 31, pp. 2578–2580, Feb. 1985.

    Article  ADS  Google Scholar 

  106. C. Colvard, R. Merlin, and M. V. Klein, and A. C. Gossard, “Observation of folded acoustic phonons in a semiconductor superlat-tice,” Phys. Rev. Lett. vol. 45, pp. 298–301, July 1980.

    Article  ADS  Google Scholar 

  107. V. Narayanamurti, H. L. Stormer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: The ‘Dielectric’ phonon filter,” Phys. Rev. Lett. vol. 43, pp. 2012–2016, Dec. 1979.

    Article  ADS  Google Scholar 

  108. B. Jusserand, F. Alexandre, J. Dubard, and D. Paguet, “Raman scattering study of acoustical zone-center gaps in GaAs/AlAs superlattices,” Phys. Rev. B vol. 33, pp. 2897–2899, Feb. 1986.

    Article  ADS  Google Scholar 

  109. B. Jusserand, D. Paguet, and A. Regreny, “’Folded’ optical phonons in GaAs/Ga, _ tAl, As superlattices,” Phys. Rev. B, vol. 30, pp. 6245–6247, Nov. 1984.

    Article  ADS  Google Scholar 

  110. A. K. Sood, J. Méndez, M. Cardona, and K. Ploog, “Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices,” Phys. Rev. Lett. vol. 54, pp. 2111–2114, May 1985.

    Article  ADS  Google Scholar 

  111. A. Colvard, T. A. Grant, and M. V. Klein, R. Melin, R. Fischer, H. Morko, and A. C. Gossard, “Folded acoustic and quantized optic phonons in (GaAl)As superlattices,” Phys. Rev. B, vol. 31, pp. 2080–2091. Feb. 1985.

    Article  ADS  Google Scholar 

  112. K. Sood, J. Méndez, M. Cardona, and K. Ploog, “Interface vibrational modes in GaAs-AlAs superlattices,” Phys. Rev. Lett., vol. 54, pp. 2115–2118, May 1985;

    Article  ADS  Google Scholar 

  113. K. Sood, J. Méndez, M. Cardona, and K. Ploog “Second-order Raman scattering by confined optical phonons and interface vibrational modes in GaAs-AlAs superlattices,” Phys. Rev. B vol. 32, pp. 1412–1414, July 1985.

    Article  ADS  Google Scholar 

  114. V. Shanabrook, J. Comas, T. A. Perry, and R. Merlin, “Raman scattering form electrons bound to shallow donors in GaAs-AlrGa, _ tAs quantum-well structures,” Phys. Rev. B vol. 29, pp. 7096–7098, June 1984.

    Article  ADS  Google Scholar 

  115. T. A. Perry, R. Merlin, B. V. Shanabrook, and J. Comas, “Observation of resonant impurity states in semiconductor quantum-well structures,” Phys. Rev. Lett. vol. 54, pp. 2623–2626, June 1985.

    Article  ADS  Google Scholar 

  116. Gammon, R. Merlin, W. T. Masselink, and H. Morko, “Raman spectra of shallow acceptors in quantum-well structures,” Phys. Rev. B vol. 33, pp. 2919–2922. Feb. 1986.

    Article  ADS  Google Scholar 

  117. R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor hetero-junction superlattices,” Appl. Phys. Lett. vol. 33, pp. 665–667, Oct. 1978.

    Article  ADS  Google Scholar 

  118. H. L. Stormer, A. C. Gossard, W. Wiegmann, and M. D. Sturge, “Two-dimensional electron gas at a semiconductor-semiconductor interface,” Solid State Commun. vol. 29, pp. 705–709, 1979.

    Article  ADS  Google Scholar 

  119. T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “A new field-effect transistor with selectively doped GaAs/n-\irGa, _, As heterojunctions,” 7pn. J. Appl. Phys.,\ol. 19, pp. L225-L227, May 1980.

    Article  Google Scholar 

  120. P. Delescluse, M. Laviron, J. Chaplart, D. Delagebeaudeuf, and N. T. Linh, “Transport properties in GaAs-Al, Ga, _ vAs hetero-structures and MESFET application,” Electron Lett. vol. 17, pp. 342–344, May 1981.

    Article  ADS  Google Scholar 

  121. M. Hieblum, E. E. Méndez, and F. Stern, “High mobility electron gas in selectively doped n: AlGaAs/GaAs heterojunctions,” Appl. Phys. Lett. vol. 44, pp. 1064–1066, June 1984.

    Article  ADS  Google Scholar 

  122. E. Méndez, P. J. Price, and M. Heiblum, “Temperature dependence of the electron mobility in GaAs-GaAlAs heterostructures,” Appl. Phys. Lett. vol. 45, pp. 294–296, Aug. 1984.

    Article  ADS  Google Scholar 

  123. B. J. F. Lin, D. C. Tsui, M. A. Paalanen, and A. C. Gossard, “Mobility of the two-dimensional electron gas in GaAs-AltGa, _ tAs heterostructures,” Appl. Phys. Lett. vol. 45, pp. 695–697, Sept. 1984.

    Article  ADS  Google Scholar 

  124. H. L. Stormer, A. C. Gossard, W. Wiegmann, and K. Baldwin, “Dependence of electron mobility in modulation-doped GaAs–(AlGa)As heterojunction interfaces on electron density and Al concentration,” Appl. Phys. Lett. vol. 39, pp. 912–914, Dec. 1981.

    Article  ADS  Google Scholar 

  125. T. J. Drummond, W. Kopp, R. Fischer, H. Morko, R. E. Thorne, and A. Y. Cho, “Photoconductivity effects in extremely high mobility modulation-doped (Al, Ga)As/GaAs heterostructures,” J. Appl. Phys. vol. 53, pp. 1238–1240, Feb. 1982.

    Article  ADS  Google Scholar 

  126. H. P. Wei, D. C. Tsui, and M. Razeghi, “Persistent photoconductivity and the quantized Hall effect in In0 s, Ga0 47As/InP heterostructures,” Appl. Phys. Lett. vol. 45, pp. 666–668, Sept. 1984.

    Article  ADS  Google Scholar 

  127. K. Hirakawa, H. Sakaki, and J. Yoshino, “Mobility modulation of the two-dimensional electron gas via controlled deformation of the electron wave function in selectively doped AlGaAs-GaAs heterojunctions,” Phys. Rev. Lett. vol. 54, pp. 1279–1282, Mar. 1985.

    Article  ADS  Google Scholar 

  128. H. L. Stormer and W. T. Tsang, “Two-dimensional hole gas at a semiconductor heterojunction interface,” Appl. Phvs. Lett. vol. 36, pp. 685–687, Apr. 1980.

    Article  ADS  Google Scholar 

  129. H. L. Stormer, K. Baldwin, A. C. Gossard, and W. Wiegmann, “Modulation-doped field-effect transistor based on a two-dimensional hole gas,” Phvs. Rev. Lett. vol. 44, pp. 1062–1064, June 1984.

    Article  Google Scholar 

  130. H. L. Stormer, Z. Schlesinger, A. Chang, D. C. Tsui, A. C. Gossard, and W. Wiegmann, “Energy structure and quantized Hall effect of two-dimensional holes,” Phvs. Rev. Lett. vol. 51, pp. 126–129. July 1983.

    Google Scholar 

  131. J. P. Eisenstein. H. L. Stormer, V. Narayanamurti, A. C. Gossard, and W. Wiegman, “Effect of inversion symmetry on the band structure of semiconductor heterostructures,” Phvs. Rev. Lett. vol. 53. pp. 2579–2581, Dec. 1984.

    Article  ADS  Google Scholar 

  132. Y. Iye, E. E. Méndez, W. I. Wang, and L. Esaki, “Magnetotransport properties and subband structure of the two-dimensional hole gas in GaAs-Ga, AlvAs heterostructures.” Phvs. Rev. B vol. 33, pp. 5854–5857. Apr. 1986.

    Article  ADS  Google Scholar 

  133. E. Mendez and W. I. Wang, “Temperature dependence of hole mobility in GaAs-Ga, _, AlvAs heterojunctions,” Appl. Phvs. Lett. vol. 46. pp. 1159–1161, June 1985.

    Article  ADS  Google Scholar 

  134. U. Ekenberg and M. Altarelli, “Calculation of hole subbands at the GaAs-Al, Ga, As interface,” Phvs. Rev. B, vol. 30, pp. 3569–3572. Sept. 1984.

    Article  ADS  Google Scholar 

  135. D. A. Broido and L. J. Sham, “Effective masses of holes at GaAs-AlGaAs heterojunctions,” Phvs. Rev. B vol. 31, pp. 888–892, Jan 1986.

    Article  ADS  Google Scholar 

  136. J. N. Schulman and Y.-C. Chang, “Band mixing in semiconductor superlattices,” Phys. Rev. B vol. 31, pp. 2056–2068, Feb. 1985.

    Article  ADS  Google Scholar 

  137. K. von Klitzing, G. Doreda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Phvs. Rev. Lett. vol. 45, pp. 494–497, Aug. 1980.

    Article  ADS  Google Scholar 

  138. K. von Klitzing, “Two-dimensional systems: A method for the determination of the fine structure constant,” Surface Sci. vol. 113, pp. 1–6, Aug. 1981.

    Article  Google Scholar 

  139. D. C. Tsui and A. C. Gossard, “Resistance standard using quantization of the Hall resistance of GaAs-Al, Ga,. tAs heterostructures,” Appl. Phys. Lett. vol. 38, pp. 550–552, Apr. 1981.

    Article  ADS  Google Scholar 

  140. D. C. Tsui, A. C. Gossard, B. F. Field, M. E. Cage, and R. F. Dziuba, “Determination of the fine-structure constant using GaAs-Al(Ga,. vAs heterostructures.” Phvs. Rev. Lett. vol. 48, pp. 3–6, Jan. 1982.

    Article  ADS  Google Scholar 

  141. T. Ando and Y. Uemura, “Theory of quantum transport in a two-dimensional electron system under magnetic fields,” J. Phvs. Soc. Japan vol. 36, pp. 959–968, Apr. 1974.

    Article  ADS  Google Scholar 

  142. H. L. Stormer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann, and K. Baldwin, “Quantization of the Hall effect in an anisotropic three-dimensional electronic system.” Phys. Rev. Lett., vol. 56, ppv 85–88, Jan. 1986.

    Article  ADS  Google Scholar 

  143. D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett. vol. 48, pp. 1559–1562, May 1982.

    Article  ADS  Google Scholar 

  144. R. B. Laughlin, “Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett. vol. 50, pp. 1395–1398, May 1983.

    Article  ADS  Google Scholar 

  145. P. K. Lam and S. M. Girvin, “Liquid-solid transition and the fractional quantum Hall effect,” Phvs. Rev. B vol. 30, pp. 473–475, July 1984.

    Article  ADS  Google Scholar 

  146. E. Méndez, M. Heiblum, L. L. Chang, and L. Esaki, “High-magnetic-field transport in a dilute two-dimensional electron gas,” Phys. Rev. B vol. 28, pp. 4886–4888, Oct. 1983.

    Article  ADS  Google Scholar 

  147. E. E. Méndez, L. L. Chang, M. Heiblum, L. Esaki, M. Naughton, K. Martin, and J. Brooks, “Fractionally quantized Hall effect in two-dimensional systems of extreme electron concentration,” Phys. Rev. B vol. 30, pp. 7310–7312, Dec. 1984.

    Article  ADS  Google Scholar 

  148. S. Kawaji, J. Wakabayashi, J. Yoshino, and H. Sakaki, “Activation energies of the 3 and | fractional quantum Hall effect in GaAs/ AlxGa1_xAs heterostructures,” J. Phys. Soc. Japan vol. 53, pp. 1915–1918, June 1984.

    Article  ADS  Google Scholar 

  149. S. Boebinger, A. M. Chang, H. L. Stórmer, and D. C. Tsui, “Magnetic field dependence of activation energies in the fractional quantum Hall effect,” Phys. Rev. Lett. vol. 55, pp. 1606–1609, Oct. 1985.

    Article  ADS  Google Scholar 

  150. S. M. Girvin, A. H. MacDonald, and P. M. Platzman, “Collective-excitation gap in the fractional quantum Hall effect,” Phys. Rev. Lett. vol. 54, pp. 581–583, Feb. 1985.

    Article  ADS  Google Scholar 

  151. E. E. Méndez, W. I. Wang, L. L. Chang, and L. Esaki, “Fractional quantum Hall effect in a two-dimensional hole system,” Phys. Rev. B vol. 30,. pp. 1087–1089, July 1984.

    Article  ADS  Google Scholar 

  152. W. Hickmott, private communication.

    Google Scholar 

  153. T. P. Smith, III, private communication.

    Google Scholar 

  154. B. A. Sai-Halasz, R. Tsu, and L. Esaki, “A new semiconductor superlattice,” Appl. Phys. Lett. vol. 30, pp. 651–654, June 1977.

    Article  ADS  Google Scholar 

  155. G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, “InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition,” Appl. Phys. Lett. vol. 18, pp. 2812–2818, Sept. 1978.

    Google Scholar 

  156. G. A. Sai-Halasz, L. L. Chang, J. M. Welter, C. A. Chang, and L. Esaki, “Optical absorption of In, _ (GavAs-GaSb(_ vAsvsuperlat-tices,” Solid State Commun. vol. 27, pp. 935–937, June 1978.

    Article  ADS  Google Scholar 

  157. M. Altarelli, “Electronic structure and semiconductor-semimetal transition in InAs-GaSb superlattice,” Phys. Rev. B vol. 28, pp. 842–845, July 1983.

    Article  ADS  Google Scholar 

  158. L. L. Chang, N. J. Kawai, G. A. Sai-Halasz, R. Ludeke, and L. Esaki, “Observation of semiconductor-semimetal transition in InAs-GaSb superlattices,” Appl. Phvs. Lett. vol. 35, pp. 939–942, Dec. 1979.

    Article  ADS  Google Scholar 

  159. Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, L. L. Chang, and L. Esaki, ‘ Cyclotron resonance and far-infrared magneto-absorption experiments on semimetallic InAs-GaSb superlattices,” Phvs. Rev. Lett. vol. 45, pp. 1719–1722, Nov. 1980.

    Article  ADS  Google Scholar 

  160. C. Mann, Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, L. L. Chang, and L. Esaki, “Three-dimensional character of semimetallic InAs-GaSb superlattices,” Solid State Commun., vol. 39, pp. 683–686, 1981.

    Article  ADS  Google Scholar 

  161. G. Bastard, E. E. Méndez, L. L. Chang, L. Esaki, “Self-consistent calculations in InAs-GaSb heterojunctions,” J. Vac. Sci. Technol., vol. 21, pp. 531.-534, July/Aug. 1982.

    Article  ADS  Google Scholar 

  162. H. Munekata, E. E. Méndez, Y. lye, and L. Esaki, “Densities and mobilities of coexisting electrons and holes in MBE grown GaSb-InAs-GaSb quantum well,” in Proc. 2nd Int. Conf. Modulated Semiconductor Structures Kyoto, Japan, 1985; to be published in Surface Sci.

    Google Scholar 

  163. E. E. Méndez, L. L. Chang, C.-A. Chang, L. F. Alexander and L. Esaki, “Quantized Hall effect in single quantum wells of InAs,” Surface Sci. vol. 142, pp. 215–219, 1984.

    Article  Google Scholar 

  164. S. Washburn, R. A. Webb, E. E. Méndez, L. L. Chang, and L. Esaki, “New Shubnikov-de Haas effects in a two-dimensional electron-hole system,” Phvs. Rev. B vol. 31, pp. 1198–1201, Jan. 1985.

    Article  ADS  Google Scholar 

  165. E. E. Méndez, L. Esaki, and L. L. Chang, “Quantum Hall effect in a two-dimensional electron-hole gas,” Phvs. Rev. Lett. vol. 55, pp. 2216–2219, Nov. 1985.

    Article  ADS  Google Scholar 

  166. G. H. Dóhler, “Electron states in crystals with nipi-superstruc-ture,” Phys. Status Solidi(b), vol. 52, pp. 79–91, 1972;

    Article  ADS  Google Scholar 

  167. G. H. Dóhler “Electrical and optical properties of crystals with ‘nipi-superstructures’,” Phys. Status Solidi(b) vol. 52, pp. 533–545, 1972.

    Article  ADS  Google Scholar 

  168. K. Ploog, A. Fischer, G. H. Dóhler, and H. Künzel, in Gallium Arsenide and Related Compounds 1980, Institute of Physics Conference Series no. 56, H. W. Thim, Ed. London: Institute of Physics, 1981, p. 721.

    Google Scholar 

  169. G. H. Dóhler, H. Künzel, D. Olego, K. Ploog, P. Ruden, H. J. Stolz, and G. Abstreiter, “Observation of tunable band gap and two-dimensional subbands in a novel GaAs superlattice,” Phys. Rev. Lett. vol. 47, pp. 864–867, Sept. 1981.

    Article  ADS  Google Scholar 

  170. B. A. Vojak, G. W. Zajac, F. A. Chambers, J. M. Meese, and P. E. Chumbey, “Photopumped laser operation of GaAs doping superlattice,” Appl. Phys. Lett. vol. 48, pp. 251–253, Jan. 1986.

    Article  ADS  Google Scholar 

  171. E. F. Schuber, A. Fischer, Y. Horikoshi, and K. Ploog, “GaAs sawtooth superlattice laser emitting at wavelengths λ > 0.9 /µm,” Appl. Phys. Lett. vol. 47, pp. 219–221, Aug. 1985.

    Article  ADS  Google Scholar 

  172. S. Yuan, M. Gal, P. C. Taylor, and G. B. Stringfellow, “Doping superlattices in organometallic vapor phase epitaxial InP,” Appl. Phys. Lett. vol. 47, pp. 405–407, Aug. 1985*.

    Article  ADS  Google Scholar 

  173. W. Jantsch, G. Bauer, P. Pichler, and H. Clemens, “Anomalous transport in PbTe doping superlattices,” Appl. Phys. Rev. vol. 47, 738–740, Oct. 1985.

    ADS  Google Scholar 

  174. A. Abeles and T. Tiedje, “Amorphous semiconductor superlattice,” Phys. Rev. Lett. vol. 51, pp. 2003–2006, Nov. 1983.

    Article  ADS  Google Scholar 

  175. T. Tiedje, B. Abeles, and B. G. Brooks, “Energy transport and size effects in the photoluminescence of amorphous-germanium/amor-phous-silicon multilayer structure,” Phys. Rev. Lett. vol. 54, pp. 2545–2547, June 1985.

    Article  ADS  Google Scholar 

  176. P. Santos, M. Hundhausen, and L. Ley, “Observation of folded-zone acoustical phonons by Raman scattering in amorphous Si-SiN, superlattices,” Phys. Rev. B vol. 33, pp. 1516–1518, Jan. 1986.

    Article  ADS  Google Scholar 

  177. J. H. vanderMerwe, “Crystal interfaces,” J. Appl. Phys. vol. 34, pp. 117–127, Jan 1963.

    Article  ADS  Google Scholar 

  178. G. C. Osbourn, “Strained-layer superlattices from lattice mismatched materials,” J. Appl. Phvs., vol. 53, pp. 1586–1589, Mar. • 1982.

    Article  ADS  Google Scholar 

  179. G. C. Osbourn, R. M. Biefeld and P. L. Gourley, “A GaAsvP,…,/ GaP strained-layer superlattice,” J. Appl. Phvs, Lett. vol. 41, pp. 172–174, July 1982.

    Article  ADS  Google Scholar 

  180. P. Voisin, C. Delalande, M. Voos, L. L. Chang, A. Segmuller, C. A. Chang, and L. Esaki, “Light and heavy valence subband reversal in GaSb-AlSb superlattices,” Phvs. Rev. B vol. 30, pp. 2276–2278, Aug. 1984.

    Article  ADS  Google Scholar 

  181. B. Jusserand, P. Voisin, M. Voos, L. L. Chang, E. E. Mendez, and L. Esaki, “Raman scattering in GaSb-AlSb strained layer superlattices,” Appl. Phys. Lett. vol. 46, pp. 678–680, Apr. 1985.

    Article  ADS  Google Scholar 

  182. K. Ploog, Y. Ohmori, H. Okamoto, W. Stolz, and J. Wagner, Appl. Phys. Lett. vol. 47, pp. 384–386, Aug. 1985.

    Article  ADS  Google Scholar 

  183. P. L. Gourley and R. M. Biefeld, “Quantum size effects in GaAs/ GaAsvP, _ strained-layer superlattices,” Appl. Phys. Lett. vol. 45, pp. 749–751, Oct. 1984.

    Article  ADS  Google Scholar 

  184. P. L. Gourley, J. P. Hohimer, and R. M. Biefeld, “Lasing transitions in GaAs/GaAs,. VP(strained-layer superlattices with x= 0.1–0.5,” Appl. Phvs. Lett. vol. 47, pp. 552–554, Sept. 1985.

    Article  ADS  Google Scholar 

  185. W. D. Laidig, P. J. Caldwell, Y. F. Lin, andC. K. Peng, “Strained-layer quantum-well injection laser,” Appl. Phys. Lett. vol. 4 4, pp. 653–655, Apr. 1984.

    Article  ADS  Google Scholar 

  186. J. Y. Marizn, M. N. Charasse, and B. Sermage, “Optical investigation of a new type of valence-band configuration in InvGa, _, As-GaAs strained superlattices,” Phys. Rev. B vol. 31, pp. 8298–8301, June 1985.

    Article  ADS  Google Scholar 

  187. E. Kasper, H. J. Herzog, and H. Kibbel, “A one-dimensional SiGe superlattice grown by UHV epitaxy,” Appl. Phvs. vol. 8, pp. 199–205, 1975.

    Article  ADS  Google Scholar 

  188. H. M. Manasevit, I. S. Gergis, and A. B. Jones, “Electron mobility enhancement in epitaxial multilayer Si-Si, _, Ge, alloy films on (100) Si,” Appl. Phys. Lett. vol. 4, pp. 464–466, Sept. 1982.

    Article  ADS  Google Scholar 

  189. J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and J. D. Robinson, “GevSi, _ t/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol., vol. A2, pp. 436–440, Apr./June 1984.

    ADS  Google Scholar 

  190. F. Cerdeira, A. Pinzcuk, J. C. Bean, B. Batlogg, and B. A. Wilson, “Raman scattering from GevSi, _,/Si strained-layer superlattices,” Appl. Phys. Lett. vol. 45, pp. 1138–1140, Nov. 1984.

    Article  ADS  Google Scholar 

  191. R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Stormer, K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation doping in GevSi, _ V/Si strained layer heterostructures,” Appl. Phys. Lett. vol. 45, pp. 1231–1232, Dec. 1984.

    Article  ADS  Google Scholar 

  192. R. People and J. C. Bean, “Band alignments of coherently strained GevSi, _ V/Si heterostructures on <001 > GevSi, _ vsubstrates,” Appl. Phys. Lett. vol. 48, pp. 538–540, Feb. 1986.

    Article  ADS  Google Scholar 

  193. F. Cerdeira, A. Pinczuk, and J. C. Bean, “Observation of confined electronic states in GevSi, _ t/Si strained-layer superlattices,” Phvs. Rev. B vol. 31, pp. 1201–1204, Jan. 1985.

    Article  ADS  Google Scholar 

  194. J. Fritz, S. T. Picraux, L. R. Dawson, and T. J. Drummond, W. D. Laidig, and N. G. Anderson, “Dependence of critical layer thickness on strain for IntGa, _ tAs/GaAs strained layer superlattices,” Appl. Phys. Lett. vol. 46, pp. 967–969, May 1985.

    Article  ADS  Google Scholar 

  195. R. Hull, J. C. Bean, F. Cerdiera, A. T. Fiory, and J. M. Gibson, “Stability of semiconductor strained-layer superlattices,” Appl. Phys. Lett. vol. 48, pp. 56–58, Jan. 1986.

    Article  ADS  Google Scholar 

  196. B. W. Dodson, “Stability of registry in strained-layer superlattice interfaces,” Phys. Rev. B vol. 30, pp. 3545–3546, Sept. 1984.

    Article  ADS  Google Scholar 

  197. A. T. Fiory, J. C. Bean, R. Hull, and S. Nakahara, “Thermal relaxation of metastable strained-layer GetSi,_</Si epitaxy,” Phys. Rev. B vol. 31, pp. 4063–4065, Mar. 1985.

    Article  ADS  Google Scholar 

  198. R. L. Gunshor, L. A. Kolodzieyski, N. Otsuka, and S. Datta, “ZnSe-ZnMn Se and CdTe-CdMnTe superlattices,” in Proc. 2nd Int. Conf. Modulated Semiconductors Structure, Kyoto, Japan, 1985, to be published in Surface Sci.

    Google Scholar 

  199. A. C. Gossard, P. M. Petroff, W. Weigmann, R. Dingle, and S. Savage, “Epitaxial structures with alternate-atomic-layer composition modulation,” Appl. Phvs. Lett. vol. 29, pp. 323–325, Sept. 1976.

    Article  ADS  Google Scholar 

  200. Fujiwara and K. Ploog, “Photoluminescence of GaAs single quantum wells confined by short-period all-binary GaAs/AlAs su-perlattices,” Appl. Phys. Lett. vol. 45, pp. 1222–1224, Dec. 1984.

    Article  ADS  Google Scholar 

  201. H. Sakaki, M. Tsuchiya, and J. Yoshino, “Energy levels an electron functions in semiconductor quantum wells having superlattice alloy-like material (0.9 nm GaAs/0.9 nm AlGaAs) as barrier layers,” Appt. Phys. Lett. vol. 47, pp. 295–297, Aug. 1985.

    Article  ADS  Google Scholar 

  202. A. Ishibashi, M. Itabashi, Y. Mori, K. Kaneko” S. Kawado, and N. Watanabe, “Raman scattering from (AlAs)„,(GaAs)flultrathin-layer superlattices,” Phys. Rev. B, vol. 33, pp. 2887–2889, Feb. 1986.

    Article  ADS  Google Scholar 

  203. Esaki, L, L. Chang, and E. E. Méndez, “Poiytype superlattice and multiheterojunctions,” J. Appl. Phys.Japan, vol. 20, pp. L529-L532, July 1981.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Editoriale Jaca Book Spa, Milano

About this chapter

Cite this chapter

Esaki, L. (1988). A Bird’s-Eye View on the Evolution of Semiconductor Superlattices and Quantum Wells. In: Margaritondo, G. (eds) Electronic Structure of Semiconductor Heterojunctions. Perspectives in Condensed Matter Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3073-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3073-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2824-1

  • Online ISBN: 978-94-009-3073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics