Skip to main content

Acoustic deformation potentials and heterostructure band offsets in semiconductors

  • Chapter
Electronic Structure of Semiconductor Heterojunctions

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 1))

  • 737 Accesses

Abstract

It is argued that the absolute hydrostatic deformation potentials recently calculated for tetrahedral semiconductors with the linear muffin-tin-orbital method must be screened by the dielectric response of the material before using them to calculate electron-phonon interaction. This screening can be estimated by using the midpoint of an average dielectric gap evaluated at special (Baldereschi) points of the band structure. This dielectric midgap energy (DME) is related to the charge-neutrality point introduced by Tejedor and Flores, and also by Tersoff, to evaluate band offsets in heterojunctions and Schottky-barrier heights. We tabulate band offsets obtained with this method for several heterojunctions and compare them with other experimental and theoretical results. The DME’s are tabulated and compared with those of Tersoff’s charge-neutrality points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. C. Herring and E. Yogt, ibid. 101,944 (1956).

    ADS  MATH  Google Scholar 

  3. J. A. Vergés, D. Glötzel, M. Cardona, and O. K. Andersen, Phys. Status Solidi B 113,519(1982).

    Article  ADS  Google Scholar 

  4. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  5. D. Penn, Phys. Rev. 128, 2093 (1962).

    Article  ADS  MATH  Google Scholar 

  6. A. Baldereschi, Phys. Rev. B 7, 5212 (1973).

    Article  ADS  Google Scholar 

  7. C. Tejedor, F. Flores, and E. Louis, J. Phys. C 10,2163 (1977).

    Article  ADS  Google Scholar 

  8. F. Flores and C. Tejedor, J. Phys. C 12,731 (1979).

    Article  ADS  Google Scholar 

  9. J. Tersoff, Phys. Rev. Lett. 52,465 (1984).

    Article  ADS  Google Scholar 

  10. J. Tersoff, Phys. Rev. B 30, 4874 (1984)

    Article  ADS  Google Scholar 

  11. see also W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. B 4, 1068 (1986).

    Article  Google Scholar 

  12. J. Tersoff; in Heterojunctions: A Modern View oJ Band Discontinuities and Applications edited by G. Margaritondo and F. Capasso (North-Holland, Amsterdam, in press).

    Google Scholar 

  13. F. S. Khan and P. B. Allen, Phys. Rev. B 29, 3341 (1984)

    Article  ADS  Google Scholar 

  14. S. Rodriguez and E. Kartheuser, ibid. 33, 772 (1986).

    ADS  Google Scholar 

  15. J. Bok and M. Combescot, in Proceedings oj the International Conference on the Physics of Semiconductors, Stockholm, 1986 (World Science, Singapore, 1987).

    Google Scholar 

  16. L. Vina, S. Logothetidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).

    Article  ADS  Google Scholar 

  17. M. Cardona, in Atomic Structure and Properties of Solids, ediled by E. Burstein (Academic, New York, 1972), p. 51.4.

    Google Scholar 

  18. See, for instance, J. R. Chelikowski and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  ADS  Google Scholar 

  19. F. H. Pollak, M. Cardona, C. W. Higginbotham, F. Herman, and J. P. Van Dyke, Phys. Rev. B 2, 352 (1971).

    Article  ADS  Google Scholar 

  20. N. E. Christensen, Phys. Rev. B 30, 5753 (1984).

    Article  ADS  Google Scholar 

  21. G. B. Bachelet and N. E. Christensen, Phys. Rev. B 31, 879 (1985).

    Article  ADS  Google Scholar 

  22. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).

    Article  ADS  Google Scholar 

  23. J. C. Phillips, Bonds and Bands in Semiconductors (Academic, New York, 1973).

    Google Scholar 

  24. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).

    Article  ADS  MATH  Google Scholar 

  25. W. A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).

    Google Scholar 

  26. J. Tersoff (private communication).

    Google Scholar 

  27. C. G. Van de Walle, C. Herring, and R. M. Martin, Phys. Rev. B (to be published).

    Google Scholar 

  28. J. D. Wiley, Solid State Commun. 8, 1865 (1970).

    Article  ADS  Google Scholar 

  29. W. Zawadzki, in Physics of Narrow Gap Semiconductors, edited by E. Gornik, H. Heinrich, and L. Palmetshofer (Springer, Heidelberg, 1982), p. 8.

    Google Scholar 

  30. K. W. Nill and A. L. McWhorter, J. Phys. Soc. Jpn. Suppl. 21, 755 (1966).

    Google Scholar 

  31. S. M. Puri, Phys. Rev. 139, A995 (1965).

    Article  ADS  Google Scholar 

  32. H. Kahlert and G. Bauer, Phys. Rev. B 7, 2670 (1973).

    Article  ADS  Google Scholar 

  33. H. L. Störmer, A. C. Gossard, W. Wiegmann, R. Blondel, and K. Baldwin, Appl. Phys. Lett. 44, 139 (1984).

    Article  ADS  Google Scholar 

  34. E. E. Mendez, P. J. Price, and M. Heilblum, Appl. Phys. Lett. 45, 294 (1984).

    Article  ADS  Google Scholar 

  35. W. Walukiewicz, H. E. Ruda, J. Lagewski, and H. C. Gatos, Phys. Rev. B 32, 2645 (1985)

    ADS  Google Scholar 

  36. P. J. Price, ibid. 32, 2643. (1985)

    ADS  Google Scholar 

  37. D. L. Rode, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1975), Vol. 10, p. 84. The argument that the deformation potential of the Г15 valence state should be taken to be zero was early given by H. Ehrenreich, J. Phys. Chem. Solids 2, 131 (1957).

    Google Scholar 

  38. B. Vinter, Phys. Rev. B 33, 5904 (1986)

    Article  ADS  Google Scholar 

  39. see also K. Hirakawa and H. Sakaki, Appl. Phys. Lett. 49, 889 (1986). These authors report \(\left| {a_c } \right|\, = 11 \pm {\rm eV}\)

    Article  ADS  Google Scholar 

  40. P. Pfeffer, I. Gorczyca, and W. Zawadski, Solid State Commun. 51, 179 (1984).

    Article  ADS  Google Scholar 

  41. H. J. Lee, J. Basinski, L.Y. Juravel, and J.C. Woolley, Can. J. Phys. 57,419 (1978).

    Google Scholar 

  42. D. L. Rode, Phys. Rev. B 3, 3287 (1971).

    Article  ADS  Google Scholar 

  43. B. R. Nag and G. M. Dutta, J. Phys. C 11, 119 (1978).

    Article  ADS  Google Scholar 

  44. P. Lawaetz, Phys. Rev. 183, 730 (1969).

    Article  ADS  Google Scholar 

  45. K. Murase, K. Enjouji, and E. Otsuka, Jpn. J. Appl. Phys. 29, 1255 (1970).

    Google Scholar 

  46. L. Pintschovius, J. A. Vergés, and M. Cardona, Phys. Rev. B 26, 5658 (1982).

    Article  ADS  Google Scholar 

  47. S. Kocsis, Phys. Status Solidi A 28, 133 (1975).

    Article  ADS  Google Scholar 

  48. J. Yokota, J. Phys. Soc. Jpn. 19, 1487 (1964).

    Article  ADS  Google Scholar 

  49. V. Pietsch and K. Unger, Phys. Status Solidi A 80, 165 (1983).

    Article  ADS  Google Scholar 

  50. C. G. Van de Walle and R. M. Martin, Mater. Res. Soc. Symp. Proc. 63, 21 (1985)

    Article  Google Scholar 

  51. J. Vac. Sci. Technol. B 4, 1055(1986).

    Article  Google Scholar 

  52. C. G. Van de Walle, Ph.D. thesis, Stanford University, Palo Alto, California, 1986 (unpublished).

    Google Scholar 

  53. G. Srinivasan, Phys. Rev. 178, 1248 (1969).

    Article  ADS  Google Scholar 

  54. J. O. McCaldin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 36, 56 (1976).

    Article  ADS  Google Scholar 

  55. W. R. Frensley and H. Kroemer, Phys. Rev. B 16, 2642 (1977).

    Article  ADS  Google Scholar 

  56. J. Tersoff, Phys. Rev. Lett. 56, 2755 (1986).

    Article  ADS  Google Scholar 

  57. L. D. Laude, F. H. Pollak, and M. Cardona, Phys. Rev. B 3, 2623 (1971);

    Article  ADS  Google Scholar 

  58. M. Chandrasekhar and F. H. Pollak, ibid. 15, 2127 (1977).

    ADS  Google Scholar 

  59. C. G. Van de Walle and R. M. Martin, Phys. Rev. B 34, 5621 (1986).

    Article  ADS  Google Scholar 

  60. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, Phys. Rev. Lett. 54, 2441 (1985).

    Article  ADS  Google Scholar 

  61. D. V. Lang, R. People, J. C. Bean, and A. M. Sargent, Appl. Phys. Lett. 47, 1333 (1985).

    Article  ADS  Google Scholar 

  62. T. F. Kuech, M. Mäenpää, and S. S. Lau, Appl. Phys. Lett. 39, 245 (1981).

    Article  ADS  Google Scholar 

  63. G. Margaritondo, A. D. Katnani, N. G. Stoffel, R. R. Daniels, and T. X. Zhao, Solid State Commun. 43, 163 (1982).

    Article  ADS  Google Scholar 

  64. P. H. Mahowald, R. S. List, W. E. Spicer, J. Woicik, and P. Pianetta, J. Vac. Sci. Technol. B 3, 1252 (1985).

    Article  Google Scholar 

  65. G. Margaritondo, Phys. Rev. B 31, 2526 (1985).

    Article  ADS  Google Scholar 

  66. C. G. Van de Walle and R. M. Martin (unpublished).

    Google Scholar 

  67. S. P. Kowalczyk, W. J. Schaffer, E. A. Kraut, and R. W. Grant, J. Vac. Sci. Technol. 20, 705 (1982).

    Article  ADS  Google Scholar 

  68. A. Blacha, H. Presting, and M. Cardona, Phys. Status Solidi B 126,11(1984).

    Article  ADS  Google Scholar 

  69. C. Priester, G. Allan, and M. Lanoo, Phys. Rev. B 33, 7386 (1986).

    Article  ADS  Google Scholar 

  70. L. M. Claessen, J. C. Maan, M. Altarelli, P. Wyder, L. L. Chang, and L. Esaki, Phys. Rev. Lett. 57, 2556 (1986).

    Article  ADS  Google Scholar 

  71. S. Groves and W. Paul, Phys. Rev. Lett. 11, 194 (1963).

    Article  ADS  Google Scholar 

  72. M. Cardona and N. E. Christensen, Solid State Commun. 58, 412(1986).

    Google Scholar 

  73. P. Becker (unpublished).

    Google Scholar 

  74. W. H. Appel, Ph.D. thesis, University of Stuttgart, 1985 (unpublished).

    Google Scholar 

  75. H. G. Bruhl, K. Jacobs, W. Seiffert, and J. Maege, Krist. Tech. 14, K29 (1979); see also Ref. 44.

    Article  Google Scholar 

  76. G. Contreras, L. Tapfer, A. K. Sood, and M. Cardona, Phys. Status Solidi B 131, 475 (1987).

    Article  ADS  Google Scholar 

  77. J. Ihm and M. L. Cohen, Phys. Rev. B 20, 729 (1979).

    Article  ADS  Google Scholar 

  78. M. K. Kelly, D. W. Niles, E. Colavita, G. Margaritondo, and M. Henzler (unpublished), quoted in Ref. 59.

    Google Scholar 

  79. J. Batey and S. L. Wright, J. Appl. Phys. 59, 1200 (1986).

    Article  Google Scholar 

  80. J. Menéndez, A. Pinczuk, D. J. Werder, A. C. Gossard, and J. H. English, Phys. Rev. B 33, 8863 (1966).

    Article  ADS  Google Scholar 

  81. J. Menéndez, A. Pinczuk, D. J. Werder, and J. P. Valladares, Solid State Commun. (to be published).

    Google Scholar 

  82. P. Perfetti, F. Patella, F. Settle, C. Quaressima, F. Capasso, A. Savoia, and G. Margaritondo, Phys. Rev. B 30, 4533 (1984).

    Article  ADS  Google Scholar 

  83. J. R. Waldrop, E. A. Kraut, S. P. Kowalczyk, and R. W. Grant, Surf. Sci. 132,513 (1983).

    Article  ADS  Google Scholar 

  84. J. Sakaki, L. L. Chang, R. Ludeke, C. A. Chang, G. A. Sai-Halasz, and L. Esaki, Appl. Phys. Lett. 31, 211 (1977).

    Article  ADS  Google Scholar 

  85. G. A. Sai-Halasz, L. L. Chang, J.-M. Welter, C.-A. Chang, and L. Esaki, Solid State Commun. 27, 935 (1978).

    Article  ADS  Google Scholar 

  86. S. P. Kowalczyk, J. T. Cheung, E. A. Kraut, and R. W. Grant, Phys. Rev. Lett. 56, 1605 (1986).

    Article  ADS  Google Scholar 

  87. K. J. McKey, P. M. G. Allen, W. G. Herrender-Harker, R. H. Williams, C. R. Whitehouse, and G. M. Williams, Appl. Phys. Lett. 49, 354 (1986).

    Article  ADS  Google Scholar 

  88. S. P. Kowalczyk, E. Kraut, J. R. Waldrop, and R. W. Grant, J. Vac. Sci. Technol. 21, 482 (1982).

    Article  ADS  Google Scholar 

  89. D. J. Olego, J. P. Faune, and P. M. Racah, Phys. Rev. Lett. 55, 328 (1985)

    Article  ADS  Google Scholar 

  90. see also J. M. Berroir, Y. Guldner, and M. Voos, IEEE J. Quantum Electron. QE-22, 1793 (1986).

    Article  ADS  Google Scholar 

  91. S. Takatani and Y. W. Chung, Phys. Rev. B 31, 2290 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Editoriale Jaca Book spa, Milano

About this chapter

Cite this chapter

Cardon, M., Christensen, N.E. (1988). Acoustic deformation potentials and heterostructure band offsets in semiconductors. In: Margaritondo, G. (eds) Electronic Structure of Semiconductor Heterojunctions. Perspectives in Condensed Matter Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3073-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3073-5_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2824-1

  • Online ISBN: 978-94-009-3073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics