Skip to main content

Theory of semiconductor heterojunctions: The role of quantum dipoles

  • Chapter
Electronic Structure of Semiconductor Heterojunctions

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 1))

  • 741 Accesses

Abstract

At any semiconductor heterojunction there is an interface dipole associated with quantum-mechanical tunneling, which depends on the band “lineup” between the two semiconductors. When the interface dipolar response dominates, the actual band discontinuity must be close to that unique value which would give a zero interface dipole. A simple criterion is proposed for this zero-dipole lineup, which gives excellent agreement with experimental band lineups. The close connection between heterojunction band lineups and Schottky barrier formation is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kroemer, in proceeding NATO Advances study lnstitute on Molecular Beam Epitaxy and Heterostructures, Erice, Sicily, 1983; edited by L. L. Chang and K. Ploog (Martinus Nijhoff, The Netherlands, in press).

    Google Scholar 

  2. J. Pollmann and A. Mazur, Thin Solid Films 104, 257 (1983).

    Article  ADS  Google Scholar 

  3. J. M. Woodall, G. D. Pettit, T. N. Jackson, C. Lanza, K. L. Kavanagh, and J. W. Mayer, Phys. Rev. Lett. 51, 1783 (1983).

    Article  ADS  Google Scholar 

  4. W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977).

    Article  ADS  Google Scholar 

  5. W. R. Frensley and H. Kroemer, Phys. Rev. B 16, 2642 (1977)

    Article  ADS  Google Scholar 

  6. W. R. Frensley and H. Kroemer J. Vac. Sci. Technol. 13, 810 (1976).

    Article  ADS  Google Scholar 

  7. R. L. Anderson, Solid State Electron. 5, 341 (1962).

    Article  ADS  Google Scholar 

  8. V. Heine, Phys. Rev. A 138, 1689 (1965).

    Article  ADS  Google Scholar 

  9. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).

    Article  ADS  Google Scholar 

  10. W. Kohn, Phys. Rev. 115, 809 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. J. Rehr and W. Kohn, Phys. Rev. B 9, 1981 (1974)

    Google Scholar 

  12. J. J. Rehr and W. Kohn, Phys. Rev., 10, 448 (1974).

    MathSciNet  ADS  Google Scholar 

  13. R. E. Allen, Phys. Rev. B 20, 1454 (1979).

    Article  ADS  Google Scholar 

  14. J. A. Appelbaum and D. R. Hamann, Phys. Rev. B 10, 4973 (1974).

    Article  ADS  Google Scholar 

  15. F. Claro, Phys. Rev. B 17, 699 (1978).

    Article  ADS  Google Scholar 

  16. J. Tersoff (unpublished).

    Google Scholar 

  17. D. R. Hamann, Phys. Rev. Lett. 42, 662 (1979).

    Article  ADS  Google Scholar 

  18. G. A. Baraff and M. Schlüter, Inst. Phys. Conf. Ser. No. 59, 287 (1981).

    Google Scholar 

  19. S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Phys. Rev. B 15, 2154 (1977), and references cited therein.

    Article  ADS  Google Scholar 

  20. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

    Google Scholar 

  21. R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, Phys. Rev. B 29, 3740 (1984). These results for alloy heterojunc- tions, if extrapolated to the pure AlAs/GaAs interface, imply a valence-band discontinuity somewhat larger than given by the theory here, whereas the experimental value given in Table II, also based on extrapolation, is smaller than the theory.

    Article  ADS  Google Scholar 

  22. J. R. Waldrop, S. P. Kowalczyk, R. W. Grant, E. A. Kraut, and D. L. Miller, J. Vac. Sci. Technol. 19, 573 (1981).

    Article  ADS  Google Scholar 

  23. W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su, and P. W. Chye, Phys. Rev. Lett. 44, 420 (1980)

    Article  ADS  Google Scholar 

  24. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, J. Vac. Sci. Technol. 16, 1422 (1979).

    Article  ADS  Google Scholar 

  25. A. D. Katnani and G. Margaritondo, Phys. Rev. B 28, 1944 (1983)

    Article  ADS  Google Scholar 

  26. P. Chiaradia, A. D. Katnani, H. W. Sang, Jr., and R. S. Bauer, Phys. Rev. Lett. 52, 1246 (1984).

    Article  ADS  Google Scholar 

  27. H. Brugger, F. Schaffler, and G. Abstreiter, Phys. Rev. Lett. 52, 141 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Editoriale Jaca Book Spa, Milano

About this chapter

Cite this chapter

Tersoff, J. (1988). Theory of semiconductor heterojunctions: The role of quantum dipoles. In: Margaritondo, G. (eds) Electronic Structure of Semiconductor Heterojunctions. Perspectives in Condensed Matter Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3073-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3073-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2824-1

  • Online ISBN: 978-94-009-3073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics