Skip to main content

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 1))

  • 736 Accesses

Abstract

The experimental observations of metallurgical interactions between compound semiconductor substrates and metallic or oxide overlayers have stimulated a new model of Fermi level “pinning” at these interfaces. This model assumes the standard Schottky picture of interface band alignment, but that the interface phases involved are not the pure metal or oxide normally assumed by other models. For both III-V and II-VI compounds, the barrier height to gold is found to correlate well with the anion work function, suggesting the interface phases are often anion rich. This correlation holds even for cases in which the “common anion rule” fails, and explains both successes and failures of this earlier model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. J. M. Woodall, C. Lanza, and J. L. Freeouf, J. Vac. Sci. Technol. 15, 1436 (1978).

    Article  ADS  Google Scholar 

  2. K. Okamoto, C. E. C. Wood, and L. F. Eastman, Appl. Phys. Lett. 15, 636 (1981).

    Article  ADS  Google Scholar 

  3. C. A. Mead and W. G. Spitzer, Phys. REv. 134, A713 (1964).

    Article  ADS  Google Scholar 

  4. W. Schottky, Zeitschrift fur Physik 118, 539 (1942).

    Article  ADS  MATH  Google Scholar 

  5. J. L. Freeouf, J. M. Woodall, and L. M. Foster, Bull. Am. Phys. Soc. 26, 285(1981).

    Google Scholar 

  6. R. L. Farrow, R. K. Chang, S. Mroczkowski, and F. H. Pollak, Appl. Phys. Lett. 31, 768(1977).

    Article  ADS  Google Scholar 

  7. G. P. Schwartz, G. L. Gualtieri, J. E. Griffiths, C. D. Thurmond, and B. Schwartz, J. Electrochem. Soc. 127, 2488 (1980).

    Article  Google Scholar 

  8. L. G. Meiners, D. L. Lile, and D. A. Collins, J. Vac. Sci. Technol. 16, 1458(1978)

    Article  ADS  Google Scholar 

  9. H. H. Wieder, J. Vac. Sci. Technol. 15, 1498 (1978).

    Article  ADS  Google Scholar 

  10. A. Hiraki, K. Shuto, S. Kim, W. Kammura, and M. Iwami, Appl. Phys. Lett. 31, 611(1977).

    Article  ADS  Google Scholar 

  11. R.S. Williams(Private communication)

    Google Scholar 

  12. A similar model has been applied to the silicide-silicon interface; see J.L. Freeouf, Sol. State Commun. 33, 1059(1980)

    Article  ADS  Google Scholar 

  13. J.O. McCaldin, T.C. McGill, and C.A. Mead, Phys. Rev. Lett. 36,(1976).

    Google Scholar 

  14. H.B. Michaelson, J. Appl. Phys. 48, 4729(1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Editoriale Jaca Book Spa, Milano

About this chapter

Cite this chapter

Freeouf, J.L., Woodall, J.M. (1988). Schottky barriers: An effective work function model. In: Margaritondo, G. (eds) Electronic Structure of Semiconductor Heterojunctions. Perspectives in Condensed Matter Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3073-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3073-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2824-1

  • Online ISBN: 978-94-009-3073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics