Skip to main content

Ge—GaAs(110) interface formation

  • Chapter
  • 733 Accesses

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 1))

Abstract

The heterojunction chemistry for Ge grown by molecular beam epitaxy (MBE) on in situ cleaved GaAs exhibits significant interdiffusion in short times at growth temperatures T G of 430°C (significantly lower critical T G than that reported for moderate-vacuum physical vapor deposition). This results in profound changes in the electronic properties of the interface as probed by synchrotron-radiation-excited 3d core electron photoemission. Even when there is significant alloying of the two lattice-matched semiconductors, there is nearly equal probability for Ge to bond to either a Ga or an As atom at the initial stage. As Ge becomes the dominant species, we find As preferentially diffusing toward the Ge side of the junction. This As is distributed throughout the overlayer in contrast to metal-semiconductor interface formation where the diffusing constituent resides only on the free, growing surface. We show that these behaviors are consistent with the kinetic and thermodynamic properties of the atomic species. The valence band discontinuity is negligible over atomic dimensions, while for an abrupt interface (T G = 350°C) we measure ΔE v = 0.7± 0.050.3 eV. The photoemission changes character rapidly with temperature, indicating an activation barrier for the diffusion below which simple expressions for attenuation of the photoelectrons by electron—electron scattering are applicable. In that case we deduce an escape depth of 7.0 ±0.5 Å, indicating uniform growth of Ge, with composition changing abruptly from GaAs over ~1 bond length in the (110) direction. A negligible (<0.2 eV) localized interface dipole layer is formed in the process.

Aspects of this work were performed at the Stanford Synchrotron Radiation Lab, which is supported in part by National Science Foundation Grant No. CMR 73–07602 in cooperation with the Stanford Linear Accelerator Center and U.S. Department of Energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R. Z. Bachrach, R. D. Burnham, R. S. Bauer, and S. B. M. Hagstrom, Material Research Society Symposium on MBE, Cambridge, MA (1976).

    Google Scholar 

  2. J. E. Davey, Appl. Phys. Lett 8, 164 (1966).

    Article  ADS  Google Scholar 

  3. R. W. Grant, J. R. Waldrop, and E. A. Kraut, J. Vac. Sci. Technol. 15, 2451 (1978).

    Article  ADS  Google Scholar 

  4. A. G. Milnes and D. L. Feucht, Heterofunctions and Metal-Semconductor Junctions (Adademic, New York, 1972), p. 251.

    Google Scholar 

  5. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon, New York, 1974), p. 20.

    Google Scholar 

  6. I. Ryu and K. Takahashi, Jpn. J. Appl. Phys. 4, 250 (1965).

    Article  ADS  Google Scholar 

  7. L. P. Hunter, editor Handbook of Semiconductor Electronics (Mraw-Hill, New York, 1970) 3rd edition, p. 7–22.

    Google Scholar 

  8. H. S. Veloric and W. J Greig, R.C. A. Rev. 21, 254 (1960).

    Google Scholar 

  9. M. Kh. Karapet’yants and M. L. Karapet’yants, Thermodynamic Constants of Inorganic and Organic Compounds (Humphrey and Science Publishers, Ann Arbor, 1970), pp. 7, 99, 103.

    Google Scholar 

  10. I. Lindau, P. W. Chye, C M. Garner, P. Pianetta, C. Y. Su, and W. E. Spicer, J. Vac. Sci. Technol. 15, 2332 (1978).

    Article  ADS  Google Scholar 

  11. R. Z. Bachrach, J. Vac. Sci. Technol. 15, 2340 (1978).

    Google Scholar 

  12. R. Z Bachrach, R. S. Bauer, and J. C. Menamin, Proc. 14th International Conference on Physics of Semiconductors (Edinburgh, 1978).

    Google Scholar 

  13. P. Pianetta, I. Lindau, C. M. Garner, and W. E. Spicer, Phys. Rev B (to be published).

    Google Scholar 

  14. J. C. Mikkelsen (private communication).

    Google Scholar 

  15. W. E. Pickett, S. G. Louis, and M L. Cohen, Phys. Rev. B17, 215 (1978).

    ADS  Google Scholar 

  16. Phys. Rev. Lett. 39, 109 (1977).

    Article  ADS  Google Scholar 

  17. R. S. Bauer, D. J. Chadi, J. C. Mikkelsen and J. C. Menamin (to be published).

    Google Scholar 

  18. R. L. Anderson, Solid State Electron. 5, 241 (1962).

    Google Scholar 

  19. A. G. Milnes and D. L. Feucht, Ref. 3, p. 3.

    Google Scholar 

  20. R. Frensley and H. Kroemer, J. Vac. Sci. Technol. 13, 210 (1976).

    Article  ADS  Google Scholar 

  21. J L. Shay, S. Wagner, and J. C. Phillips, Appl. Phys. Lett. 28, 21 (1976).

    Article  ADS  Google Scholar 

  22. W. A. Harrison, J. Vac. Sci., Technol. 14, 2016 (1977).

    Article  ADS  Google Scholar 

  23. W. E. Pickett and M. L. Cohen, J. Vac. Sci. Technol. 15, 2437 (1978).

    Article  ADS  Google Scholar 

  24. F. Herman and R. V. Kasowski, Phys. Rev. B 17, 272 (1978).

    ADS  Google Scholar 

  25. W. E. Pickett and M. L. Cohen. Solid State Commun. 25, 225 (1978).

    Article  ADS  Google Scholar 

  26. W. R. Frensley and H. Kroemer, Phys. Rev. B 16, 2642 (1977).

    ADS  Google Scholar 

  27. G. A. Baraff, J. A. Applebaum, and D. R. Hamann, Phys. Rev. Lett. 38, 237 (1977).

    Article  ADS  Google Scholar 

  28. J. Vac. Sci. Technol. 14, 299 (1977).

    Article  ADS  Google Scholar 

  29. R. S. Bauer, R. Z Bachrach, S. A. Flodstrom, and J. C. Menamin, J. Vac. Sci. Technol. 14, 278 (1977).

    Article  Google Scholar 

  30. R. S. Bauer, D. J. Chadi, J. C. Menamin, and R. Z Bachrach, Proceedings of the 7th International Vacuum Congress and 3rd International Conference on Solid Surfaces (Vienna 1977), p. A-2699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Editoriale Jaca Book Spa, Milano

About this chapter

Cite this chapter

Bauer, R.S., McMenamin, J.C. (1988). Ge—GaAs(110) interface formation. In: Margaritondo, G. (eds) Electronic Structure of Semiconductor Heterojunctions. Perspectives in Condensed Matter Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3073-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3073-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2824-1

  • Online ISBN: 978-94-009-3073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics