Skip to main content

Paleosols and the Evolution of the Atmosphere: Part I

  • Chapter
Physical and Chemical Weathering in Geochemical Cycles

Part of the book series: NATO ASI Series ((ASIC,volume 251))

Abstract

As a subject of inquiry, the chemical evolution of the atmosphere has a long and distinguished history. However, few tools have been available until recently that yield more than qualitative answers to questions regarding changes in the partial pressure of O2 and CO2 in the atmosphere during the course of earth history. The study of paleosols (ancient soils) now promises to yield semiquantitative answers to these questions. The composition of soils today reflects not only the composition of the present-day atmosphere, but also the intense chemical effects of the biosphere. The CO2 content of soil air is strongly enhanced by respiration and by the microbial oxidation of organic matter in soils. In soils which are poorly drained, the O2 content of soil air is significantly depleted by the same processes. Before the advent of higher land plants the effects of the biosphere must have been much weaker and may have been negligible compared to the effects of inorganic processes. For this reason the chemistry of paleosols is potentially useful for reconstructing the pre-mid-Ordovician evolution of the atmosphere (Holland, 1984, Chapter 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsen, M., 1979, Kohlendioxid-Haushalt in der Gasphase der ungesättigten Bodenzone, dargestellt am Beispiel eines Podsols; Z. Pfhanzenernaehr. Bodenkd. 142, 39–56.

    Article  Google Scholar 

  • Birkeland, P. W., 1974, Pedology, Weathering, and Geomorphological Research; Oxford University Press, 285 pp.

    Google Scholar 

  • Bonneau, M. and Souchier, B., 1982, Constituents and Properties of Soils; V. C. Farmer, Translation Editor; Academic Press, 495 pp.

    Google Scholar 

  • Buchman, H. O. and Brady, N. C., 1968, The Nature and Properties of Soils; 6th Ed., The Macmillan Co., New York, 567 pp.

    Google Scholar 

  • Button, A., 1979, Early Proterozoic weathering profile on the 2200 m.y. old Hekpoort Basalt, Pretoria Group, South Africa: Preliminary results. Inf. Circ. No. 133, Economic Geology Research Unit, University of Witwatersrand, Johannesburg, South Africa.

    Google Scholar 

  • Buyanovsky, G. A. and Wagner, G. H., 1983, Annual cycles of carbon dioxide level in soil air; Soil Sci. Am. J. 47, 1139–1145.

    Article  Google Scholar 

  • Capo, R. C., 1984, Petrology and geochemistry of a Cambrian paleosol developed on Precambrian granite, Llano Uplift, Texas. Unpub. M.A. thesis, University of Texas at Austin.

    Google Scholar 

  • Campbell, S. E., 1979, Soil stabilization by a procaryotic desert crust: implications for a Precambrian land biota; Origins of Life 9, 335–348.

    Article  Google Scholar 

  • Charlson, R. J., Warren, S. F., Lovelock, J., and Andreae, M. O., 1986, On the feedback loop of dimethylsulfide from biota, cloud condensation nuclei, and climate. EOS, 67, No. 44, 869.

    Google Scholar 

  • Craig, D. C. and Loughnan, F. C., 1964, Chemical and mineralogical transformations accompanying the weathering of basic volcanic rocks from New South Wales, Aust. J. Soil Res. 2, 218–234.

    Article  Google Scholar 

  • Crampton, D. G. V., 1972, The geochronology of the acid igneous rocks of the Derdepoort area, N. W. Transvaal. Unpub. B.S. thesis, University of Witwatersrand, Johannesburg, South Africa.

    Google Scholar 

  • De Jong, E., Douglas, J. T. and Goss, M. J., 1983, Gaseous diffusion in shrinking soils; Soil Science 136, 10–18.

    Article  Google Scholar 

  • Dorf, E., 1964, The petrified forests of Yellowstone Park; Scientific American, 210, 106–112.

    Google Scholar 

  • Eckhardt, F. E. W., 1985, Solubilization, transport and deposition of mineral cations by microorganism-efficient rock weathering agents; pp. 161–173 in J. I. Drever (ed.), The Chemistry of Weathering, D. Reidel Publishing Co., 324 pp.

    Google Scholar 

  • Goetz, P. A., 1980, Depositional environment of the Sherridon Group and related mineral deposits near Sherridon, Manitoba. Unpub. Ph.D. thesis, Carleton University, Ottawa, Ontario.

    Google Scholar 

  • Gray, J., 1985, The microfossil record of early land plants, 1970–1984; Phil. Trans. Roy. Soc. London, Ser. B 309, pp. 167–192.

    Article  Google Scholar 

  • Hendricks, D. M. and Whittig, L. D., 1968, Andesite weathering, II. Geochemical changes from andesite to saprolite; Jour. Soil Sci. 19, 147–153.

    Article  Google Scholar 

  • Holland, H. D., 1978, The Chemistry of the Atmosphere and Oceans, 351 pp., Wiley-Interscience, New York.

    Google Scholar 

  • Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, N.J., 582 pp.

    Google Scholar 

  • Holland, H. D., Zbinden, E. A., Lazar, B. and Dobos, S., A paleosol developed on Keweenawan basalt, in preparation.

    Google Scholar 

  • Joffe, A. F. and Revut, I. B., 1966, Fundamentals of Agrophysics (English Translation from the Russian).

    Google Scholar 

  • Kasting, J. F., 1986, Theoretical constraints on atmospheric CO2 levels during the Precambrian. EOS, 67, No. 44, 867.

    Google Scholar 

  • Kasting, J. F., Holland, H. D. and Pinto, J. P., 1985, Oxidant abundances in rainwater and the evolution of atmospheric oxygen; Jour. Geophys. Res., 90, 10,497–10,510.

    Article  Google Scholar 

  • Lai, S.-H., Tiedje, J. M. and Erickson, A. E., 1976, In situ measurement of gas diffusion coefficient in soils; Soil Sci. Soc. Amer. J. 40, 3–6.

    Article  Google Scholar 

  • Lai, R., 1981, Physical properties; in D. J. Greenland (ed.), Characterization of Soils; Clarendon Press, Oxford.

    Google Scholar 

  • Meybeck, M., 1983, Atmospheric inputs and river transport of dissolved substances, pp. 173–192, in Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships; Proc. Hamburg Symposium, Aug. 1983, IAHS Publ. No. 141.

    Google Scholar 

  • Morel, F. M. M., 1983, Principles of Aquatic Chemistry, Wiley-Interscience, New York, 446 pp.

    Google Scholar 

  • Nielson, K. K., Rogers, V. C. and Gee, G. W., 1984, Diffusion of radon through soils: a pore distribution model; Soil Sci. Soc. Am. J. 48, 482–487.

    Article  Google Scholar 

  • Pavich, M. J. and Obermeier, S. F., 1985, Saprolite formation beneath coastal Plain sediments near Washington, D.C., Bull. Geol. Soc. Amer. 96, 886–900.

    Article  Google Scholar 

  • Pinto, J. P. and Holland, H. D., 1987, Paleosols and the evolution of the atmosphere, in press.

    Google Scholar 

  • Retallack, G., 1981, Preliminary observations on fossil soils in the Clarno Formation (Eocene to early Oligocene) near Clarno, Oregon;Oregon Geology 43, 147–150.

    Google Scholar 

  • Retallack, G., 1985,Laboratory Exercises in Paleopedology. (unpublished laboratory manual) University of Oregon, Eugene, 74 pp.

    Google Scholar 

  • Retallack, G., 1986, The fossil record of soils; in, P. V. Wright (ed.), Paleosols, Their Recognition and Interpretation; Blackwells, London.

    Google Scholar 

  • Retallack, G., Grandstaff, D. and Kimberley, M., 1984, The promise and problems of Precambrian paleosols; Episodes 7, 8–12.

    Google Scholar 

  • Richter, J. and Grossgebauer, A., 1978, Untersuchungen zum Bodenlufthaushalt in einem Bodenbearbeitungsversuch. 2. Gasdiffusionskoeffizienten als Strukturmasse für Böden; Z. Pflanzenernaehr. Bodenkd. 141, 181–202.

    Article  Google Scholar 

  • Roeschmann, G., 1971, Problems concerning investigations of paleosols in older sedimentary rocks, demonstrated by the example of Wurzelboden of the Carboniferous System; in, D. H. Yaalon (ed.), Paleopedology. Origin, Nature, and Dating of Paleosols; Halsted Press, New York, 350 pp.

    Google Scholar 

  • Rogers, V. C., Nielsen, K. K., Rich, D. C., Sundquist, G. M. and Mauch, M. L., 1982, Radon attenuation with earthen covers; RAE-33–14. Annual Report to U.S. Department of Energy, UM-TRAP Project Office by Rogers Associates Engineering Corp., Salt Lake City, Utah.

    Google Scholar 

  • Silker, W. B. and Kalkwarf, D. R., 1983, Radon diffusion in candidate soils for covering uranium mill tailings, NUREG/GR 2924. U.S. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Stumm, W., Furrer, G., Wieland, E. and Zinder, B., 1985, The effects of complex-forming ligands on the dissolution of oxides and aluminosilicates; pp. 55–74, in J. I. Drever (ed.), The Chemistry of Weathering; D. Reidel Publishing Co., 324 pp.

    Google Scholar 

  • Sundquist, E. T., 1985, Geological perspectives on carbon dioxide and the carbon cycle; pp. 5–59 in E. T. Sundquist and W. S. Broecker (eds.), The Carbon Cycle and Atmospheric C02: Natural Variations Archean to Present;Geophysical Monograph 32, American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Taylor, S. A., 1949, Oxygen diffusion in porous media as a measure of soil aeration; Soil Science Soc. Proc. 14, 55–61.

    Article  Google Scholar 

  • Turcotte, D. L., 1980, On the thermal evolution of the earth; Earth Planet. Sci. Lett. 48, 53–58.

    Article  Google Scholar 

  • Tyler, N., 1979, Stratigraphy, geochemistry, and correlation of the Ventersdorp Supergroup in the Derdepoort area, West-Central Transvaal, Trans. Geol. Soc. S. Afr. 82, 133–147.

    Google Scholar 

  • Von Damm, K. L., Grant, B. and Edmond, J. M., 1983, Preliminary report on the chemistry of hydrothermal solutions at 21° North, East Pacific Rise; pp. 369–389 in P. A. Rona, K. Bostrom, L. Laubier, and K. L. Smith, Jr. (eds.), Hydrothermal Processes at Seafloor Spreading Centers; Plenum Press, New York and London, 796 pp.

    Google Scholar 

  • White, D. E., Hem, J. D. and Waring, G. A., 1963, Chemical composition of sub-surface waters; in M. Fleischer, Technical Editor, Data of Geochemistry, Sixth Edition; U.S. Geological Survey Professional Paper 440-F.

    Google Scholar 

  • Willett, I. R., 1983, Oxidation-reduction reactions, in Soils, An Australian Viewpoint, Division of Soils CSIRO, CSIRO, Academic Press.

    Google Scholar 

  • Yaalon, D. (ed.), 1971, Paleopedology: Origin Nature, and Dating of Paleosols; Halsted Press, New York, 350 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Holland, H.D., Zbinden, E.A. (1988). Paleosols and the Evolution of the Atmosphere: Part I. In: Lerman, A., Meybeck, M. (eds) Physical and Chemical Weathering in Geochemical Cycles. NATO ASI Series, vol 251. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3071-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3071-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7881-8

  • Online ISBN: 978-94-009-3071-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics