Skip to main content

How to Establish and Use World Budgets of Riverine Materials

  • Chapter
Physical and Chemical Weathering in Geochemical Cycles

Part of the book series: NATO ASI Series ((ASIC,volume 251))

Abstract

Average river water composition is often taken as a reference of surface water chemistry (Stumm and Morgan, 1981), and global river inputs have been used to set up the elemental mass balance of oceans (Burton and Liss, 1973; Berner and Raiswell, 1983; Martin, Burton and Eisma, 1981; Wollast and Mackenzie, 1983). The sodium budget has been used to estimate the age of the ocean (Clarke, 1924; Conway, 1942; Livingstone, 1963b). The rivers are a major pathway in the global geochemical cycles of elements, and they are probably one of the better known parts of the external cycle, since extensive work has been done on the composition and origins of river loads (Garrels and Mackenzie, 1971; Berner, 1971; Holland, 1978; Ivanov, 1981; Kempe, 1979). A recent trend in geochemistry is the modelling of past cycles based on today’s data, an approach that is also of great interest in geology and sedimentology (Berner, Lasaga and Garrels, 1983; Garrels and Lerman, 1984). However, this extrapolation can only be achieved through careful consideration of present river loads which are now very much affected by human activity. The coupling between elemental cycles, as discussed in SCOPE publications (Likens, 1981), makes clear the role of the atmosphere and biosphere in the global cycles and, hence, in the river fluxes. Finally, the river loads have long been considered as the essential information basis for land erosion rates (Meade, 1969, and this volume)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekin, O.A., 1978. Water erosion of land surface, in World Water Balance and Water Resources of the Earth. Studies and Reports in Hydrology 25, Unesco Press, 663 p.

    Google Scholar 

  • Alekin, O.A., and Brazhnikova, L.V., 1960. Contribution to knowledge of dissolved matter runoff at the earth’s surface. Gidrochim. Mat., 32, 12–34 (in Russian).

    Google Scholar 

  • Alekin, O.A., and Brazhnikova, L.V., 1968. Dissolved matter discharge and mechanical and chemical erosion. Assoc. Int. Hydr. Sci., Publ. 78, 35–41.

    Google Scholar 

  • Aurada, K.D., 1980. Steuerungsmechanismen des Ionenabflusses und der chemischen Denudation. Acta Hydrochim. Hydrobiol., 8, 6, 525–559.

    Google Scholar 

  • Baumgartner, A., and Reichel, E., 1976. The World Water Balance. Elsevier, 179 p.

    Google Scholar 

  • van Bennekom, A.J., and Salomons, W., 1981. Pathways of organic nutrients and organic matter from land to oceans through rivers, in Martin J., Burton D., and Eisma D. (eds.), River Input to the Ocean System: Unesco-Unep-Scope Workshop, Rome, 1979, 33–51.

    Google Scholar 

  • Berner, R.A., 1971. Worldwide sulfur pollution of rivers. J. Geophys. Res. 76, 6597–6600.

    Article  Google Scholar 

  • Berner, R. A., Lasaga, A. C., and Garrels, R. M., 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci., 283, 641–683.

    Article  Google Scholar 

  • Berner, R.A., and Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta 47, 855–862.

    Article  Google Scholar 

  • Blatt, H., and Jones, R.L., 1975. Proportions of exposed igneous, metamorphic and sedimentary rocks. Geol. Soc. Am. Bull., 86, 1085–1088.

    Article  Google Scholar 

  • Brass, G.W., 1978. Magnesium in continental runoff. Geochim. Cosmochim. Acta 42, 1459–1462.

    Article  Google Scholar 

  • Burton, J.D., and Liss, P., 1973. Process of supply’and removal of dissolved silicon in the oceans. Geochim. Cosmochim. Acta 37, 1761–1773.

    Article  Google Scholar 

  • Carbonnel, J.P., and Meybeck, M., 1975. Quality variation of the Mekong river at Phnom Penh, Cambodia, and chemical transport in the Mekong basin. J. Hydrol., 27, 249–265.

    Article  Google Scholar 

  • Carpenter, R., 1969. Factors controlling the marine geochemistry of fluorine. Geoch. Cosmochim. Acta 33, 1153–1167.

    Article  Google Scholar 

  • Clarke, F.W., 1924. Data of Geochemistry. 5th ed.,U.S. Geol. Surv. Bull. 770, 841 p.

    Google Scholar 

  • Conway, E.J., 1942. The chemical evolution of the ocean. Irish Acad. Sci. Proc., 4813, 119–159 and 161–212.

    Google Scholar 

  • Corbel, J. 1964. L’erosion terrestre e’tude quantitative. Ann. Geographic, 398, 385–412.

    Article  Google Scholar 

  • Degens, E., 1982. Transport of carbon and minerals in major world rivers. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 52, 766 p.

    Google Scholar 

  • Degens, and Ittekot, V., 1985. Particulate organic carbon, an overview, in E. Degens, S. Kempe, and H. Herrera (eds.), Transport of Carbon and Minerals in Major World Rivers, Part III. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 58, 7–28.

    Google Scholar 

  • Degens, E., Kempe, S., and Soliman, H., 1983. Transport of carbon and minerals in major world rivers. Part 2. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 55, 534 p.

    Google Scholar 

  • Degens, E., Kempe, S., and Herrera, H. (eds.), 1985. Transport of carbon and minerals in major world rivers. Part 3. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 58, 645 p.

    Google Scholar 

  • Durum, W.H., Heidel, G., Tison, L.J., 1960. Worldwide runoff of dissolved solids. Int. Ass. Sci. Hydroi, Publ. 51, 618–628.

    Google Scholar 

  • Edmond, J.M., Boyle, E.A., Grani, B., and Stallard, R.F., 1981. The chemical mass balance in the Amazon plume. I. The nutrients. Deep-Sea Res. 28A, 11, 1339–1374.

    Article  Google Scholar 

  • Erikson, E., 1960. The yearly circulation of chloride and sulfur in nature, meteorological, geochemical and pedological implications. Tellus, 12, 63–109.

    Article  Google Scholar 

  • Figuères, G., Martin, J.M., and Thomas, A., 1982. Apport par les fleuves d’uranium dissous a l’ocèan; exemple du Zaire. Oceanol. Acta 5, 141–147.

    Google Scholar 

  • Fournier, F., 1960. Glimat et Erosion. Presses Universitaires de France, Paris.

    Google Scholar 

  • Fournier, F., 1969. Transports solides effectues par les cours d’eau. Bull. Int. Ass. Sci. Hydroi. 14, 7–49.

    Article  Google Scholar 

  • Furch, K., 1984. Water chemistry of the Amazon. The distribution of chemical elements among freshwaters, in H. Sioli (ed.), The Amazon. Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin, Junk and Pudoc, pp. 167–199.

    Google Scholar 

  • Garrels, R.M., and Mackenzie, F.T., 1971. Evolution of Sedimentary Rocks. W.W. Norton, New York, 397 p.

    Google Scholar 

  • Garrels, R.M., and Lerman, A., 1984. Coupling of the sedimentary sulfur and carbon cycles— an improved model. Am. J. Sci., 284, 989–1007.

    Article  Google Scholar 

  • Gordeev, V.V., and Lisitzin, A.P., 1978. Average chemical composition of suspended matter in world river and river inputs to the oceans (in Russian). Dokl. Akad. Nauk. SSSR, 238, 1 225–228.

    Google Scholar 

  • Gordeev, V.V., 1983. River Inputs to the Oceans and Their Chemical Characteristics. Nauka Publishers, Moscow, 160 pp. (in Russian).

    Google Scholar 

  • Gordeev, V.V., Miklishansky, A.Z., Migdisov, A.A., Artemyev, V.E., 1985. Rare element distribution in the surface suspended material of the Amazon river, some of its tributaries and estuary, in Degens E., Kempe S., and Herrera H. (eds.), Transport of Carbon and Minerals in Major World Rivers. Mit. Geol. Palaeont. Inst. Univ. Hamburg, pp. 225–244.

    Google Scholar 

  • Holeman, J.N., 1968. The sediment yield of the major rivers of the world. Water Res. Res. 4, 737–747.

    Article  Google Scholar 

  • Holland, H.D., 1978. The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, 351 p.

    Google Scholar 

  • Hu, Ming Hui, Stallard, R.F., and Edmond, J.M., 1982. Major ion chemistry of some large Chinese rivers. Nature, 298, 550–553.

    Article  Google Scholar 

  • Ittekot, V., Martins, O., and Seifert, R., 1983. Nitrogenous organic matter transported by the major world rivers. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 55, 119–127.

    Google Scholar 

  • Ivanov, M.V., 1981. The global biogeochemical sulfur cycle, in G.E. Likens (ed.), Some Perspectives of the Major Biogeochemical Cycles. SCOPE 17, John Wiley, 61–80.

    Google Scholar 

  • Jansen, J.M.L., and Painter, R.B., 1974. Predicting sediment yield from climate and topography. J. Hydroi. 21, 371–380.

    Article  Google Scholar 

  • Kempe, S., 1979. Carbon in the Rock Cycle, in B. Bolin, E.T. Degens, S. Kempe, and P. Ketner (eds.), The Global Carbon Cycle. SCOPE 13, John Wiley, 343–377.

    Google Scholar 

  • Kempe, S., 1982. Long-term record of the C02 pressure fluctuations in fresh water, in E. T. Degens (ed.), Transport of Carbon and Minerals in Major World Rivers. Part I. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 52, 91–332.

    Google Scholar 

  • Kempe, S., 1985. Compilation of carbon and nutrients discharge from major world rivers, in E. T. Degens, S. Kempe, and H. Herrera (eds.), Transport of Carbon and Mineral in Major World Rivers, Part III. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 58, 29–32.

    Google Scholar 

  • Lesack, L.F.W., Hecky, R.E., and Melack, J.M., 1984. Transport of carbon, nitrogen, phosphorus, and major solutes in the Gambia river, West Africa. Limnol. Oceanogr., 816–830.

    Google Scholar 

  • Lewis, W.M., and Weibezahn, 1981. The chemistry and phytoplankton of the Orinoco and Caroni rivers. Archiv. Hydrobiol. 91, 4, 521–528.

    Google Scholar 

  • Li, Y.H., Teraoka, H., Yang, T.S., and Chen, J.S., 1984. The elemental composition of suspended particles from the Yellow and Yang Tse rivers. Geochim. Cosmochim. Acta 48, 1561–1564.

    Article  Google Scholar 

  • Likens, G.E. (ed.), 1981. Some Perspectives of the Major Biogeochemical Cycles. SCOPE 17, John Wiley, 175 p.

    Google Scholar 

  • Livingstone, D.A., 1963a. Chemical composition of rivers and lakes, in Data of Chemistry. U.S. Geol. Survey Prof. Paper 440 G, 1–64.

    Google Scholar 

  • Livingstone, D.A., 1963b. The sodium cycle and the age of the ocean. Geochim. Cosmochim. Acta 27, 1055–1069.

    Article  Google Scholar 

  • Lvovich, M.I., 1972. World water balance. Int. Ass. Sci. Hydrol. Reading Symp., 401–415.

    Google Scholar 

  • Malcolm, R.L., and Durum, W.H., 1976. Organic carbon and nitrogen concentration and annual organic load for six selected rivers of the USA U.S. Geol. Survey Water Supply Paper 1817, 21 p.

    Google Scholar 

  • Mantoura, R., and Woodward, E., 1983. Conservative behaviour of riverine dissolved organic carbon in the Severn estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta 47, 1293–1309.

    Article  Google Scholar 

  • Martin, J.M., Hogdahl, O., and Philippot, J.C., 1976. Rare earth elements supply to the ocean. J. Geophys. Res. 81, 18, 3119–3124.

    Article  Google Scholar 

  • Martin, J.M., Burton, D., and Eisma, D. (eds.), 1981. River Input to the Ocean System. Unesco-Unep-Scope Workshop, Rome, 1979, 384 pp.

    Google Scholar 

  • Martin, J.M., and Meybeck, M., 1979. Elemental mass-balance of material carried by world major rivers. Marine Chem., 7, 173–206.

    Article  Google Scholar 

  • Martin, J.M., and Salvadori, F., 1983. Fluoride pollution in French rivers and estuaries. Est. Coast. Shelf. Sci. 17, 231–242.

    Article  Google Scholar 

  • Martin, J.M., and Whitfield, M., 1983. The significance of the river input of chemical elements to the ocean,in C.S. Wong (ed.), Trace Metals in Seawater. Proc. NATO Adv. Res. Inst., March 1981, Erice, Plenum Press, 265–296.

    Google Scholar 

  • Meade, R.H., 1969. Errors in using modern stream load data to estimate natural rates of denudation. Geol. Soc. Am. Bull. 80, 7, 1265–1274.

    Article  Google Scholar 

  • Meade, R.H., Nordin, C.F., Curtis, W.F., Costa Rodriguez, F.M., Do Vale, C.M., and Edmond, J.M., 1979. Sediment loads in the Amazon river. Nature, 278, 161–163.

    Article  Google Scholar 

  • Meybeck, M., 1976. Total mineral transport by world major rivers. Hydrol. Sci. Bull., 21, 265–284.

    Article  Google Scholar 

  • Meybeck, M., 1977. Dissolved and suspended matter carried by rivers: composition, time and space variations and world balance,in H.L. Golterman (ed.), Interaction between sediments and fresh waters. Amsterdam, Junk and Pudoc, pp. 25–32.

    Google Scholar 

  • Meybeck, M., 1979. Concentration des eaux fluviales en elements majeurs et apports en solution aux oceans. Rev. Geol. Dyn. Geogr. Phys. 21, 3, 215–246.

    Google Scholar 

  • Meybeck, M., 1981. Pathways of major elements from land to ocean through rivers, in J.M. Martin, J.D. Burton, and D. Eisma (eds.), River Input to the Ocean System. Unesco-Unep-Scope Workshop, Rome, 1979, 18–30.

    Google Scholar 

  • Meybeck, M., 1982. Carbon, nitrogen and phosphorus transport by world rivers. Amer. J. Set., 282, April, 401–450.

    Google Scholar 

  • Meybeck, M., 1983. Atmospheric inputs and river transport of dissolved substances, in, Dissolved loads of rivers and surface water quantity/quality relationships. Proc. IASH Symp. Hamburg, August 1983,Int. Ass. Hydrol. Sci. Publ. 141, 173–192.

    Google Scholar 

  • Meybeck, M., 1984a. Les fleuves et le cycle geochimique des éléments. Thèse de Doctorat d’Etat, Univ. Paris VI, 500 pp.

    Google Scholar 

  • Meybeck, M., 1984b. Variabilité de la composition chimique naturelle des eaux courantes. Verh. Internat. Verein. Limnol. 22, 1766–1774.

    Google Scholar 

  • Meybeck, M. 1986. Composition chimique des ruisseaux non pollués de France. Sci. Geoi. Bull. Strasbourg, 39, 1, 3–77.

    Google Scholar 

  • Milliman, J.D., and Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. J. Geology, 91, 1–21.

    Article  Google Scholar 

  • Milliman, J.D., Quinchun, X., and Zuosheng, Y., 1984. Transfer of particulate organic carbon and nitrogen from the Yang Tse river to the ocean. Am. J. Sci., 824–834.

    Google Scholar 

  • Parde, M., 1953. La turbidite’ des rivieres, ses facteurs géographiques. Rev. Geogr. Alpine 41, 399–421.

    Article  Google Scholar 

  • Reeder, S.W., Hitchon, B., and Levinson, A.A., 1972. Hydrogeochemistry of the surface waters of the Mackenzie river drainage basin, Canada. I. Factors controlling inorganic composition. Geochem. Cosmochim. Acta 36, 825–865.

    Article  Google Scholar 

  • Romankevich, E.A., and Artemyev, V.E., 1985. Import of organic carbon into seas and oceans bordering the territory of the Soviet Union. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, 58, 459–469.

    Google Scholar 

  • Schlesinger, W.H., and Melack, J.M., 1981. Transport of organic carbon in the world’s rivers. Tellus, 33, 172–187.

    Article  Google Scholar 

  • Seyler, P., 1985. Formes chimiques et comportement de l’ arsenic dans le milieu estuarien. Thèse de Doctorat, Univ. Paris VI, 193 p.

    Google Scholar 

  • Soviet IHD, 1978. World water balance and water resources of the earth, by the U.S.S.R. Committee for the International Hydrological Decade. Studies and Reports in Hydrology, 25, Unesco Press, 663 p.

    Google Scholar 

  • Stallard, R. F., 1980. Major element geochemistry of the Amazon river system. Ph. D. Thesis, MIR-WHO I, Woods Hole Inst. Oceanogr., WHOI-80 29, 362 p.

    Google Scholar 

  • Stallard, R. F., and Edmond, J.M., 1981. Geochemistry of the Amazon. 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res., 86, 9844–9858.

    Article  Google Scholar 

  • Stallard, R.F., and Edmond, J.M., 1983. Geochemistry of the Amazon. 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res., 88, 9671–9688.

    Article  Google Scholar 

  • Stumm, W., and Morgan, J.J., 1981. Aquatic Chemistry, 2nd Ed. Wiley Interscience, 780 p.

    Google Scholar 

  • Turekian, K., 1971. Rivers, tributaries and estuaries, in D.W. Hood (ed.), Impingement of Man on the Oceans. Wiley, New York, 9–73.

    Google Scholar 

  • UNESCO (1969 and 1971). Discharge of selected rivers of the world. Studies and Reports in Hydrology, Vol. I, II, III.

    Google Scholar 

  • UNESCO, 1974. Gross sediment transport into the oceans. Unesco-IAHS, internal report, Division of Water Sciences.

    Google Scholar 

  • UNESCO, 1979. World register of rivers discharging to the oceans. Division of Water Sciences, Technical Paper.

    Google Scholar 

  • Vallentyne, J. R., 1978. Today is yesterday’s tomorrow. Verh. Intern. Ver. Limnol., 20, 1–12.

    Google Scholar 

  • Wadleigh, M., Veizer, J., and Brooks, C., 1985. Strontium and its isotopes in Canadian rivers: fluxes and global implications. Geochim. Cosmochim. Acta 49, 1727–1736.

    Article  Google Scholar 

  • Williams, P.J.L., 1968. Organic and inorganic nutrients in the Amazon river. Nature, 218, 937–938.

    Article  Google Scholar 

  • Wollast, R., and Mackenzie, F.T., 1983. The global cycle of silica, in Aston (ed.), Silicon Geochemistry and Bio geochemistry. Academic Press, 39–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meybeck, M. (1988). How to Establish and Use World Budgets of Riverine Materials. In: Lerman, A., Meybeck, M. (eds) Physical and Chemical Weathering in Geochemical Cycles. NATO ASI Series, vol 251. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3071-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3071-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7881-8

  • Online ISBN: 978-94-009-3071-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics