Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 247))

Abstract

Two C*-subalgebras A and B of the algebra of bounded operators on a Hilbert space are close if the Hausdorff distance between their unitballs is small. I present some results, which show that in many cases close C*-algebras do have many properties in common, and under certain conditions they actually have to be unitarily equivalent via a unitary close to the identity. The study involves a number of questions such as: Which invariants are stable under a small perturbation of a C*-algebra? Are close C*-algebras linearly isomorphic? If the algebras are linearly isomorphic through a mapping which is nearly multiplicative, are the algebras then algebraicly isomorphic? Is an algebra isomorphism of an algebra A onto an algebra B such that φ(a) − a ≤ δ a for some small δ implemented by an invertible near the identity? The following article presents some positive answers and a pair of counter examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arveson W.B.,’interpolation problems in nest algebras, J.Funct. Anal. 20 (1975), 208–233.

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi M.-D.; Christensen E.,’Completely order isomorphic and close C*-algebras need not be *-isomorphic, Bull’. London Math. Soc. JJ (1983), 604–610.

    Google Scholar 

  3. Christensen E.,’Perturbations of type I von Neumann algebras, J. London Math. Soc. 9 (1975), 395–405.

    Article  MATH  Google Scholar 

  4. Christensen E., ‘Perturbations of operator algebra’, Invent. Math, 43 (1977), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen E., ‘Perturbations of operator algebras II’, Indiana Univ. Math. J. 26 (1977), 891–904.

    MATH  Google Scholar 

  6. Christensen E., Extensions of derivations’, J. Funct. Anal 27 (1978), 234–247.

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen E., Subalgebras of a finite algebra1, Math. Ann. 243 (1979), 17–29.

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen E., ‘Near Indusions of C*-algebras’, Acta Math. 144 (1980), 249–265.

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen E., ‘Extensions of derivations II’, Math. Scand. 50 (1982), 111–122.

    MathSciNet  MATH  Google Scholar 

  10. Christensen E.,’On non self-adjoint representations of C*-algebras’, Amer J. Math. 103 (1981), 817–833.

    Article  MATH  Google Scholar 

  11. Christensen E., ‘Similarities of II1 factors with property r, J. Oper. Theory (1986), 281–288.

    Google Scholar 

  12. Connes A.,‘Classification of injective factor’, Ann. Math. 104 (1976), 73–115.

    Article  MathSciNet  MATH  Google Scholar 

  13. Connes A.,’On the cohomology of operator algebras’, J. Funct. Anal 28 (1978), 248–253.

    Article  MathSciNet  MATH  Google Scholar 

  14. Connes A., ‘A factor of type II-j with countable fundamental group’, J. Oper. Theory 4 (1980), 151–153.

    MathSciNet  MATH  Google Scholar 

  15. Haagerup U., ‘Solution of the similarity problem for cyclic representations of C*-algebras’, Ann. Math. 118 (1983), 215–240.

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson B. E., Perturbations of Banach algebras’, J. London Math. Soc. 34 (1977), 439–458.

    Article  MATH  Google Scholar 

  17. Johnson B. E., counterexample in the perturbation theory of C*-algebras’, Canad. Math. Bull. (1982), 311–316.

    Google Scholar 

  18. Kadison R. V., ‘Derivations of operator algebra’, Ann. Math. 83 (1966), 280–293.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kadison R. V.; Kastler D., ‘Perturbations of von Neumann algebras I, stability of type’, Amer. J. Math. 94 (1972), 38–54.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kadison R. V.; Ringrose J. R., Fundamentals of the theory of operator algebras I & II, Academic Press 1983 & 1986.

    Google Scholar 

  21. Khoskam M., Perturbations of C*-algebras and K-theory’, Preprint

    Google Scholar 

  22. Khoskam M., ‘On the unitary equivalense of close C*-algebras’, Preprint.

    Google Scholar 

  23. Lance E. C., ‘Cohomology and perturbations of nest algebra’, Proc. London Math. Soc. 43 (1981), 334–356.

    MathSciNet  MATH  Google Scholar 

  24. Phillips J., ‘Perturbations of type I von Neumann algebras, Pacific J. Math. 52 (1974), 505–511.

    MATH  Google Scholar 

  25. Phillips J., ‘Perturbations of C*-algebras’, Indiana Univ. Math. J. 23 (1974), 1167–1176.

    MATH  Google Scholar 

  26. Phillips J.; Raeburn I., ‘Perturbations of A. F. algebras’, Canad. Math. J. 3J (1979), 1012–1016.

    MathSciNet  Google Scholar 

  27. Phillips J.; Raeburn I., ‘Perturbations of operator algebras ii’, Proc. London Math. Soc. 43 (1981), 46–72.

    MathSciNet  MATH  Google Scholar 

  28. Pisier G., ‘Grothendieck’s theorem for non commutative C*-algebras with an appendix on Grothendieck’ s constant’, J.Funct. Anal. 29 (1978), 397–415.

    MathSciNet  MATH  Google Scholar 

  29. Raeburn I.; Taylor J., ‘Hochschild cohomology and perturbations of Banach algebras, J. Funct. Anal. 25 (1977), 258–266.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ringrose J. R., ‘Cohomology of operator algebras’, Lecture notes in Math. 247 (1972), 309–434.

    Article  MathSciNet  Google Scholar 

  31. Sakai S., ‘Derivations of W* -algebras1’, Ann. Math. 83 (1966), 273–279.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Christensen, E. (1988). Close Operator Algebras. In: Hazewinkel, M., Gerstenhaber, M. (eds) Deformation Theory of Algebras and Structures and Applications. NATO ASI Series, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3057-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3057-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7875-7

  • Online ISBN: 978-94-009-3057-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics