Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 247))

Abstract

The purpose of this note is to focus attention on a collection of algebras (over an arbitrary commutative ring k) for which we believe reasonable structure theorems should be obtainable. We call these algebras triangular. (§1). In §3 we show that they share a striking feature: their global dimension is finite. The definition of triangularity involves a new radical — which we call the tensor radical — for Noetherian rings. (§1). If A is commutative its tensor radical is 0 while for finite dimensonal algebras over a field the tensor radical is contained in the Jacobson radical. When k is a field a triangular k-algebra is a finite dimensional algebra satisfying: 1. the Jacobson radical, J(A), is a tensor nilpotent A-bimodule, i.e. a tensor product (over A) of sufficiently many copies of J(A) vanishes; 2. A/J(A) is a separable k-algebra. For example the algebra of upper triangular n × n matrices is triangular while k[x]/x2 is not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. M. Auslander, On the Dimension of Modules and Algebras III: Global Dimension, Nagoya Math. J. 9 (1955) 67–77.

    MathSciNet  MATH  Google Scholar 

  2. E. Artin, C.J. Nesbitt, and R.M. Thrall, Rings with Minimum Condition, University of Michigan Press, Ann Arbor, 1964.

    Google Scholar 

  3. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers (John Wiley), New York, 1962.

    Google Scholar 

  4. S. Eilenberg, Algebras of Cohomologically Finite Dimension, Comment. Math. Helv. 28 (1954) 310–319.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Eilenberg, A. Rosenberg, and D. Zelinsky, On the Dimension of Modules and Algebras VIII: Dimension of Tensor Products, Nagoya Math. J. 12 (1957) 71–93.

    MathSciNet  MATH  Google Scholar 

  6. M. Gerstenhaber, The Cohomology Structure of an Associative Ring, Ann. of Math. (2) 76 (1963) 267–266.

    Article  MathSciNet  Google Scholar 

  7. M. Gerstenhaber, On the Deformation of Rings and Algebras, Ann. of Math. (2) 79 (1964) 59–103.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Gerstenhaber and S.D. Schack, On the Deformation of Algebra Morphisms and Diagrams, Trans. Amer. Math. Soc. (1) 279 (1963) 1–50.

    Article  MathSciNet  Google Scholar 

  9. M. Gerstenhaber, Simplicial Cohomology is Hochschild Cohomology, J. Pure and Applied Alg. (2) 30 (1963) 143–156.

    Article  MathSciNet  Google Scholar 

  10. M. Gerstenhaber, Relative Hochshild Cohomology, Rigid Algebras, and the Bockstein,J. Pure and Applied Alg. (1) 43 (1966) 53–74.

    MathSciNet  Google Scholar 

  11. M. Gerstenhaber, The Cohomology of Presheaves of Algebras I:

    Google Scholar 

  12. Presheaves over a Partially Ordered Set, Trans. Amer. Math. Soc., to appear

    Google Scholar 

  13. R.V. Kadison and I.M. Singer, Triangular Operator Algebras, Amer. J. Math. 82 (1960) 227–259.

    Article  MathSciNet  MATH  Google Scholar 

  14. E.C. Lance, Cohomology and Perturbations of Nest Algebras, Proc. London Math. Soc. (3) 43 (1961) 334–356.

    MathSciNet  Google Scholar 

  15. D.R. Larson, Nest Algebras and Similarity Transformations,Ann. of Math. 121 (1965) 409–427.

    Article  MathSciNet  Google Scholar 

  16. D.R. Larson, Triangularity in Operator Algebras, Proceedings of the NSF Special Year in Operator Theory (Univ. of Indiana), Pitman, Boston, to appear.

    Google Scholar 

  17. S. Maane, Homology, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  18. G. Mazzola, The Algebraic and Geometric Classification of Associative Algebras of Dimension Five, Manuscripta Math. 27 (1979), 61–101.

    Article  MathSciNet  Google Scholar 

  19. B. Mitchell, Theory of Categories, Academic Press, New York, 1965.

    MATH  Google Scholar 

  20. N.E. Steenrod, Products of Cocycles and Extensions of Mappings, Ann. of Math. (2) 48 (1947), 290–320.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gerstenhaber, M., Schack, S.D. (1988). Triangular Algebras. In: Hazewinkel, M., Gerstenhaber, M. (eds) Deformation Theory of Algebras and Structures and Applications. NATO ASI Series, vol 247. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3057-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3057-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7875-7

  • Online ISBN: 978-94-009-3057-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics