Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 246))

  • 218 Accesses

Abstract

In the first part of the paper, the notion of evolution is introduced, as opposed to that of stability and instability. A definition is proposed that involves the variations of the energy and angular momentum integrals of a subgroup of an isolated N body system.

When there are only gravitational interactions between the bodies, the conditions for evolution are outlined and some examples are given. This is in particular applied to the case when there exists a massive central body.

Several examples of evolution when non-conservative forces are also acting are proposed. It is shown that evolution takes place because generally there exists a non-vanishing component of the disturbing force perpendicular to the radius vector in the orbital plane. This is the case of the atmospheric drag, of the Poynting-Robertson effect and of tidal effects. Some details are presented for the latter and the results are applied to the evolution of the Earth-Moon system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Belyaev, N.A., Kresàk, L., Pittich, E.M. and Pushkarev, A.N., 1986, “Catalogue of short period comets”, Astronomical Institute of the Slovak Academy of Sciences publisher, Bratislava.

    Google Scholar 

  • Burns, J.A., Lamy, P.L. and Soter, S., 1979, Icarus, 40, p.l.

    Article  ADS  Google Scholar 

  • Carusi, A., Kresak, L., Perozzi, E. and Valsecchi, G.B., 1985, in “Dynamics of Comets: their origin and evolution”, A. Carusi and G.B. Valsecchi eds., IAU Colloquium 83, Rome, D. Reidel Publ. Co. Dordrecht, p.319.

    Google Scholar 

  • Harrington, R.S., 1974, Celestial Mechanics,9, p.465.

    Article  ADS  MATH  Google Scholar 

  • Harrington, R.S., 1975, Astronomical Journal, 80, p.1081

    Article  ADS  Google Scholar 

  • Kaula, W.M., 1964, Reviews of geophysics and Space Physics,2, p.661.

    Article  ADS  Google Scholar 

  • King-Hele, D.G., 1964, “Theory of salte! lite orbits in an atmosphere”, Butterworths Publ. Co., London.

    Google Scholar 

  • Kovalevsky, J., 1967, “Introduction to Celestial Mechanics”, Reidel Publ. Co., Dordrecht, p.116.

    MATH  Google Scholar 

  • Kovalevsky, J., 1982, in “Applications of Modern Dynamics to Celestial Mechanics and Astrodynamics”, V. Szebehely ed., Reidel Publ. Co., Dordrecht, p.59.

    Google Scholar 

  • Kovalevsky, J., 1985, in “Stability of the Solar System and its Minor Natural and Artificial Bodies”, V.G. Szebehely ed., Reidel Publ. Co., Dordrecht, p.39.

    Google Scholar 

  • Lambeck, K., 1977, Phil. Transactions, Royal Society, London, 287, p.545.

    ADS  Google Scholar 

  • Marchal, C., 1974, Celestial Mechanics, 9, p.381.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Marchal, C., 1985, in “Stability of the Solar System and its Minor Natural and Artificial Bodies”, V.G. Szebehely ed., Reidel Publ. Co., Dordrecht, p.115.

    Google Scholar 

  • Mignard, F., 1979, The Moon and the Planets, 20, p.301.

    Article  ADS  MATH  Google Scholar 

  • Mignard, F., 1980, The Moon and the Planets, 23, p.185.

    Article  ADS  Google Scholar 

  • Milani, A., and Nobili, A.M., 1985, in “Stability of the Solar System and its Minor Natural and Artificial Bodies”, V.G. Szebehely ed., Reidel Publ. Co., Dordrecht, p.139.

    Google Scholar 

  • Milani, A., Nobili, A.M. and Carpino, M., 1987, Astronomy and Astrophys. 172, p.265.

    ADS  MATH  Google Scholar 

  • Pollard, H. and Saari, D.G., 1970, Celestial Mechanics, 1, p.347.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Standish, E.M., 1971, Celestial Mechanics, 4, p.44.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Szebehely, V.G., 1973, Celestial Mechanics, 8, p.163.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Szebehely, V.G., 1979, in “Instabilities in Dynamical Systems”, V.G. Szebehely ed., Reidel Publ. Co., Dordrecht, p.61.

    Google Scholar 

  • Szebehely, V.G., 1985, in “Stability of the Solar System and its Minor Natural and Artificial bodies”, V.G. Szebehely ed., Reidel Publ. Co., Dordrecht, p.175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kovalevsky, J. (1988). Orbital Evolution. In: Roy, A.E. (eds) Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems. NATO ASI Series, vol 246. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3053-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3053-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7873-3

  • Online ISBN: 978-94-009-3053-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics