Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 246))

  • 219 Accesses

Abstract

The zonal artificial satellite is presented in polar-nodal variables considering all the harmonics and, taking into account the importance that the radial intermediaries have in the satellite theory, we present another alternative to the second order analytical methods of Deprit (1981), Alfriend and Coffey (1984). This process consists of the application of two Lie-trans formations in order to simplify the Hamiltonian and obtaining finally a new radial intermediary which only contains the even harmonics. A twelfth-order Cowell method with a fixed step size of 100 seconds is applied to compare the solution of the Cid’s and Deprit’s intermediaries (until first order) with respect to the main problem solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfriend, K.T. and Coffey, S.L.: 1984. “Elimination of the perigee in the satellite problem”. Celes. Mech. 32, 163–172.

    Article  ADS  MATH  Google Scholar 

  2. Brouwer, D.: 1959, “Solution of the Problem of Artificial Satellite Theory without Drag”. Astron. J. 64, 378–397.

    Article  MathSciNet  ADS  Google Scholar 

  3. Caballero, J.A., Ferrer, S. and Sein-Echaluce, M.L.: 1986, “Second Order Solution of a Radial Intermediary in Satellite Theory”, Bhatnagar, ed.,’Space Dynamics and Celestial Mechanics, 243–253.

    Google Scholar 

  4. Cid, R. and Lahulla, J.F.: 1969. “Perturbaciones de corto periodo en el movimiento de un satélite artificial en functión de las variables de Hill”. Rev. Acad. Ciencias de Zaragoza, 24, 159–165.

    Google Scholar 

  5. Cid, R. y., Lahulla, J.F.: 1969. “Perturbaciones de corto periodio en el movimiento de un satélite artificial, en functión de las variables de Hill”. Rev. Acad. Cienc. de Zaragoza 24, 159–165.

    Google Scholar 

  6. Coffey, S.L., and Deprit, A.: 1982. “Third-order solution to the main problem in satellite theory”. J. Guidance, Control and Dynamics 5, 366–371.

    Article  MathSciNet  MATH  Google Scholar 

  7. Deprit, A.: 1969. “Canonical transformations depending on a small parameter”. Celes. Mech. 1, 12–30.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Deprit, A.: 1981. “The elimination of the parallax in satellite theory”. Celes. Mech. 24, 111–153.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Deprit, A. and Rom, A.: 1970. The Main Problem of Artificial Satellite Theory for Small and Moderate Eccentricities”. Celes. Mech. 2, 166–206.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Ferrándiz, J.M., Ferrer, S. and Sein-Echaluce, M.L.: 1987. “The Generalized Elliptic Anomalies”, to appear in Celes. Mech.

    Google Scholar 

  11. Ferrer, S. and Sein-Echaluce, M.L.: 1986. “Times Transformation and Linearization on Radial Intermediaries in the Zonal Earth Artificial Satellite Theory”. ESA SP-255, Dec.1986.

    Google Scholar 

  12. Franco, J.M. and Palacios, M.: 1986, “Une classe de methodes numériques pour l’intégration directe d’équations différentielles du type y” = f(t, y,y’)”. Proceedings of the XIX Congres d’Analyse Numerique, Toulouse.

    Google Scholar 

  13. Kinoshita, H.: 1977. “Third Order Solution of an Artificial Satel lite Theory”. NASA-CR-154509, Report No.379, Nov.1979.

    Google Scholar 

  14. Kozai, V.: 1962, “Second-Order Solution of Artificial Satellite Theory Without Air Drag”, Astron. J., 67, 446–461.

    Article  MathSciNet  ADS  Google Scholar 

  15. Lahulla, J.F.: 1970. “Movimiento de satites artificials. Eliminación de pequeños divisores en una teoría de segundo orden”. Doctoral Thesis. Zaragoza.

    Google Scholar 

  16. Sein-Echaluce, M.L., Abad, A. and Elipe, A.: 1987. “Application of the Stroboscopy method to the Radial Intermediaries in Satellite Theory”. IAF-87–334 Brighton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sein-Echaluce, M.L., Franco, J.M. (1988). A New Radial Intermediary and its Numerical Integration. In: Roy, A.E. (eds) Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems. NATO ASI Series, vol 246. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3053-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3053-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7873-3

  • Online ISBN: 978-94-009-3053-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics