Advertisement

Information-Theoretical Generalization of the Uncertainty Principle

  • A. J. M. Garrett
Part of the Fundamental Theories of Physics book series (FTPH, volume 31-32)

Abstract

Recent suggestions on how to extend the uncertainty principle. using the concept of information, are reviewed. The Heisenberg variance uncertainty principle is shown to be a special case for canonically conjugate continuous variables. The possibility of further generalization is considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckner, W. (1975). Ann. Math. 102, 159–182.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bialynicki-Birula, I. (1985). Entropic Uncertainty Relations in Quantum Mechanics. In Quantum Probability and Applications II, eds. L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics Vol. 1136, pp. 90–103. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  3. Bialynicki-Birula, I. & Madajczyk, J.L. (1985). Phys. Lett. 108A, 384–386.MathSciNetGoogle Scholar
  4. Breitenberger, E. (1985). Found Phys. 15, 353–364.MathSciNetCrossRefGoogle Scholar
  5. Deutsch, D. (1983). Phys. Rev. Lett. 50, 631–633.MathSciNetCrossRefGoogle Scholar
  6. Everett, H. (1973). The Theory of the-Universal Wave Function. In The Many-Worlds Interpretation of Quantum Mechanics, eds. B. S. de Witt and N. Graham. Princeton, N.J.: Princeton University Press.Google Scholar
  7. Jaynes, E.T. (1963). Information Theory and Statistical Mechanics. In Statistical Physics (1962 Brandeis Lectures), ed. K. W. Ford, pp. 181–218. New York: Benjamin. Reprinted as Chapter 4 of Jaynes (1983), with the relevant analysis on p. 46.Google Scholar
  8. Jaynes, E.T. (Sept. 1968). Prior Probabilities. In IEEE Trans. on Systems Science and Cybernetics, SSC-4, pp. 227–241. Reprinted as Chapter 7 of Jaynes (1983).Google Scholar
  9. Jaynes, E.T. (1979). Marginalization and Prior Probabilities. In Bayesian Analysis in Econometrics and Statistics: Essays in Honor of Sir Harold Jeffreys, ed. A. Zellner, pp. 43–87. Amsterdam: North-Holland. Reprinted as Chapter 12 of Jaynes (1983).Google Scholar
  10. Jaynes, E.T. (1983). Papers on Probability, Statistics and Statistical Physics, ed. R. D. Rosencrantz. Dordrecht: Reidel.Google Scholar
  11. Levy-Leblond, J.-M. (1985). Phys. Lett. 111A, 353–355.Google Scholar
  12. Partovi, M.H. (1983). Phys. Rev. Lett. 50, 1883–1885.MathSciNetCrossRefGoogle Scholar
  13. Sibisi, S. (1983). Nature 301, 134–136.CrossRefGoogle Scholar
  14. Uffink, J.B.M. & Hilgevoord, J. (1984). Phys. Lett. 105A, 176–178.Google Scholar
  15. Uffink, J.B.M. & Hilgevoord, J. (1985). Found. Phys. 15, 925–944.MathSciNetCrossRefGoogle Scholar
  16. Wootters, W.K. & Zurek, W.H. (1979). Phys. Rev. D19, 473–484.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • A. J. M. Garrett
    • 1
  1. 1.The Sir Frank Packer Theoretical Department, School of PhysicsThe University of SydneySydneyAustralia

Personalised recommendations