Skip to main content

Direct Use of the Diatomics-in-Molecules Method in Large Systems and in Dynamical Calculations

  • Chapter
  • 142 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 245))

Abstract

The rapid calculation of potential energy surfaces is a pre-requisite for dynamical calculations as well as for the investigation of systems having a large number of degrees-of-freedom. Such calculations can be effected readily by the method of diatomics-in-molecules (DIM), which is capable of treating ground and excited states on a nearly equal footing. The development of a new computer program enabling application of the method to an arbitrary molecule is described. The utility of the new program is illustrated by reference to three physical systems with widely differing requirements: (1) electronic structure calculations of ionised rare-gas clusters (many degrees-of-freedom); (2) The interaction of excited and ground state alkali atoms in the neighbourhood of a metal surface (excited states, large number of degrees-of-freedom); and (3) the reaction dynamics of O(1D) + H2 → OH(X2Π) + H (excited states, trajectory calculations). The DIM program is so constructed as to be directly usable in a trajectory program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.O. Ellison, J. Am. Chem. Soc., 85 (1963) 3540.

    Article  CAS  Google Scholar 

  2. J.C. Tully, Adv. Chem. Phys., 42 (1980) 63.

    Article  Google Scholar 

  3. P.J. Kuntz, in Atom-Molecule Collision Theory, ed. R.B. Bernstein, (Plenum, New York, 1979), chap 3.

    Google Scholar 

  4. R. Polak, I. Paidarova and P.J. Kuntz, J. Chem. Phys., 82 (1985) 2352.

    Article  CAS  Google Scholar 

  5. J. Gerratt, Chem. in Britain, 23 (1987) 327.

    Google Scholar 

  6. J. Hesslich and P.J. Kuntz, Z. Phys. D, 2 (1986) 251.

    Article  CAS  Google Scholar 

  7. H. Haberland, Surf. Sci., 156 (1985) 305.

    Article  CAS  Google Scholar 

  8. H. Haberland, in Electronic and Ionic Collisions ed.J. Eichler, I.V. Hertel and N. Stolterfoht, (Elsevier, 1984), p. 597.

    Google Scholar 

  9. I.A. Harris, R.S. Kidwell and J.A. Northby, Phys. Rev. Lett., 53 (1984) 2390.

    Article  CAS  Google Scholar 

  10. D. Kreisel, O. Echt, M. Knapp and E. Recknagel, Surf. Sci., 156 (1985) 321.

    Article  Google Scholar 

  11. J.J. Saenz, J.M. Soler and N. Garcia, Surf. Sci., 156 (1985) 121.

    Article  CAS  Google Scholar 

  12. J.J. Saenz, J.M. Soler and N. Garcia, Chem. Phys. Lett., 114 (1985) 15;

    Article  CAS  Google Scholar 

  13. J.M. Soler, J.J. Saenz and N. Garcia, ibid. 109 (1984) 71.

    CAS  Google Scholar 

  14. E.E. Polymeropoulos and J. Brickmann, Surf. Sci., 156 (1985) 563.

    Article  CAS  Google Scholar 

  15. C.E. Moore, Natl. Bur. Stand. US. Circ. 467. (1949).

    Google Scholar 

  16. H.U. Böhmer and S.D. Peyerimhoff, Z. Phys. D. 3 (1986) 195.

    Article  Google Scholar 

  17. W.R. Wadt, J. Chem. Phys., 68 (1978) 402.

    Article  CAS  Google Scholar 

  18. R.O. Watts and I.J. McGee, in Liquid State Chemical Physics, Chap. 7, (Wiley, 1976).

    Google Scholar 

  19. W.R. Wadt, Appl. Phys. Lett., 38 (1981) 1030.

    Article  CAS  Google Scholar 

  20. M. Amarouche, G. Durand and J.P. Malrieux (private communication).

    Google Scholar 

  21. K.S. Sorbie and J.N. Murrell, Mol. Phys., 29 (1975) 1387; ibid. 31 (1976) 905.

    Article  CAS  Google Scholar 

  22. J.N. Murrell, S. Carter, I.M. Mills and M.F. Guest, Mol. Phys., 42 (1981) 605.

    Article  CAS  Google Scholar 

  23. P.J. Kuntz, Int, J. Quantum Chem., 29 (1986) 1105.

    Article  CAS  Google Scholar 

  24. B. Auschwitz and K. Lacmann, Chem. Phys. Lett., 113 (1985) 230.

    Article  CAS  Google Scholar 

  25. J.W. Gadzuk, Comments At. Mol. Phys., 16 (1985) 219.

    CAS  Google Scholar 

  26. J.C. Tully, J. Chem. Phys., 65 (1976) 1002.

    Article  CAS  Google Scholar 

  27. P.J. Kuntz, B.I. Niefer and J.J. Sloan, J. Chem. Phys., 88 (1988) 3629.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kuntz, P.J. (1988). Direct Use of the Diatomics-in-Molecules Method in Large Systems and in Dynamical Calculations. In: Whitehead, J.C. (eds) Selectivity in Chemical Reactions. NATO ASI Series, vol 245. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3047-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3047-6_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7870-2

  • Online ISBN: 978-94-009-3047-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics