Skip to main content

Alignment Effects in Electronic Energy Transfer and Reactive Events

  • Chapter
Selectivity in Chemical Reactions

Part of the book series: NATO ASI Series ((ASIC,volume 245))

Abstract

The rates of electronic curve crossing processes depend critically on the alignment of atomic orbitals, which determine the symmetries of the electronic potentials participating in the reaction or energy transfer event. Recent work from our laboratory is presented on the effect of orbital alignment in near resonant energy transfer processes of electronically excited Ca and Sr atoms. Several energy transfer events are carried out on aligned p-states in collisions with rare gases. The simplicity of the rare gas systems in terms of their symmetry and nonreactive nature is advantageous for comparison to accurate theoretical treatment. In the context of understanding chemical phenomena, collisions of these atoms with molecular partners are also investigated. This opens the possibility to study the correlation of alignment dependent effects in competing reactive and energy transfer pathways. Remarkably state-specific alignment effects are also observed when two or more independent energy transfer pathways are accessible.

Staff member, Quantum Physics Division, National Bureau of Standards

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.N. Zare, Ber. Bunsenges. Phys. Chem., 86 (1982) 422

    CAS  Google Scholar 

  2. S. Stolte, ibid ,p. 413.

    Google Scholar 

  3. S.R. Leone, Ann. Rev. Phys. Chem., 35 (1984) 109.

    Article  CAS  Google Scholar 

  4. E.E.B. Campbell, H. Schmidt and I.V. Hertel, Adv. Chem. Phys., (in press).

    Google Scholar 

  5. For a recent reference, see A. Sieradzan, Opt. Comm.. 56 (1985) 243, and references therein.

    Article  CAS  Google Scholar 

  6. L. Hüwel, J. Maier, H. Pauly, J. Chem. Phys., 76 (1982) 4961.

    Article  Google Scholar 

  7. W.J. Alford, N. Anderson, K. Burnett and J. Cooper, Phys. Rev. A, 30 (1984) 2366.

    Article  CAS  Google Scholar 

  8. J.M. Mestdagh, J. Berlande, P. dePujo, J. Cuvellier and A. Binet, Z. Phys. A, 304 (1982) 3.

    Article  CAS  Google Scholar 

  9. W. Reiland, G. Jamieson, U. Tittes and I.V. Hertel, Z. Phys. A, 307 (1982) 51.

    Article  CAS  Google Scholar 

  10. A. Bahring, I.V. Hertel, E. Meyer, N. Spies and H. Schmidt, J. Phys. B, 17 (1984) 2859.

    Article  Google Scholar 

  11. A. Bahring, E. Meyer, I.V. Hertel and H. Schmidt, Z. Phys. A, 320 (1985) 141.

    Article  Google Scholar 

  12. M.P.I. Manders, J.P.J. Driessen, H.C.W. Beijerinck and B.J. Vertiaar, Phys. Rev. Lett., 57 (1986) 1577.

    Article  CAS  Google Scholar 

  13. M.O. Hale, I.V. Hertel and S.R. Leone, Phys. Rev. Lett., 53 (1984) 2296.

    Article  CAS  Google Scholar 

  14. D. Neuschäfer, M.O. Hale, I.V. Hertel and S.R. Leone, in Electronic and Atomic Collisions XIV ICPEAC, edited by D.C. Lorents, W.E. Meyerhof and J.R. Peterson (Amsterdam, North Holland, 1986), p. 585.

    Google Scholar 

  15. W. Bussert, D. Neuschäfer and S.R. Leone, J. Chem. Phys., 87 (1987) 3833..

    Article  CAS  Google Scholar 

  16. W. Bussert and S.R. Leone, Chem. Phys. Lett., (in press).

    Google Scholar 

  17. W. Bussert and S.R. Leone, Chem. Phys. Lett., (in press).

    Google Scholar 

  18. W. Bussert, T. Bregel, R.J. Allan, M.W. Ruf and H. Hotop, Z. Phys. A, 320 (1985) 105.

    Article  CAS  Google Scholar 

  19. J.G. Kirez, R. Morgenstern and G. Nienhuis, Phys. Rev. Lett., 48 (1982) 610.

    Article  Google Scholar 

  20. M.-X. Wang, M.S. DeVries and J. Weiner, Phys. Rev. A. 33 (1986) 765.

    Article  CAS  Google Scholar 

  21. M.-X. Wang, M.S. DeVries and J. Weiner, Phys. Rev. A, 33 (1986) 1612.

    Article  Google Scholar 

  22. M.-X. Wang, J. Keller, J. Boulmer and J. Weiner, Phys. Rev. A, 34 (1986) 4497.

    Article  CAS  Google Scholar 

  23. C.T. Rettner and R.N. Zare, J. Chem. Phys., 74 (1981) 3630.

    Article  Google Scholar 

  24. C.T. Rettner and R.N. Zare, J. Chem. Phys., 77 (1982) 2417.

    Article  Google Scholar 

  25. H.W. Hermann and I.V. Hertel, Comments At. Mol. Phys., 12 (1982) 61, 127.

    CAS  Google Scholar 

  26. I.V. Hertel, H. Schmidt, A. Bahring and E. Meyer, Rep. Prog. Phys., 48 (1985) 375.

    Article  CAS  Google Scholar 

  27. R. Witte, E.E.B. Campbell, C. Richter, H. Schmidt and I.V. Hertel, Z. Phys. D, 5 (1987) 101.

    Article  CAS  Google Scholar 

  28. J. Cooper, in Spectral Line Shapes, Vol. 2, edited by K. Burnett (de Gruyter, Berlin, 1983) p. 737.

    Google Scholar 

  29. M.O. Hale and S.R. Leone, J. Chem. Phys., 79 (1983) 3352.

    Article  CAS  Google Scholar 

  30. A.Z. Devdariani and A.L. Zagrebin, Chem. Phys. Lett., 131 (1986) 197.

    Article  CAS  Google Scholar 

  31. B. Pouilly and M.H. Alexander, J. Chem. Phys., 86 (1987) 4790.

    Article  CAS  Google Scholar 

  32. K. Fuke, T. Saito and K. Kaya, J. Chem. Phys., 81 (1984) 2591.

    Article  CAS  Google Scholar 

  33. M.-C. Duval, O. Benoist D’Azy, W.H. Breckenridge, C. Jouvet and B. Soep, J. Chem. Phys., 85 (1986) 6324.

    Article  CAS  Google Scholar 

  34. K. Yamanouchi, J. Fukuyama, H. Horiguchi, S. Tsuchiya, K. Fuke, T. Saito and K. Kaya, J. Chem. Phys., 85 (1986) 1806.

    Article  CAS  Google Scholar 

  35. A. Kowalski, DJ. Funk and W.H. Breckenridge, Chem. Phys. Lett., 132 (1986) 263.

    Article  CAS  Google Scholar 

  36. E.A. Andreev and A.I. Voronin, Chem. Phys. Lett., 3 (1969) 488.

    Article  CAS  Google Scholar 

  37. F. Rebentrost and W.A. Lester, J. Chem. Phys., 67 (1977) 3367.

    Article  CAS  Google Scholar 

  38. A.P. Hickman, Phys. Rev. Lett., 47 (1981) 1585.

    Article  CAS  Google Scholar 

  39. H.-J. Yuh and P.J. Dagdigian, J. Phys. B. 17 (1984) 4351.

    Article  CAS  Google Scholar 

  40. H.-J. Yuh and P.J. Dagdigian, J. Chem. Phys., 81 (1984) 2375.

    Article  CAS  Google Scholar 

  41. R.W. Schwenz and S.R. Leone, Chem. Phys. Lett., 133 (1987) 433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Leone, S.R. (1988). Alignment Effects in Electronic Energy Transfer and Reactive Events. In: Whitehead, J.C. (eds) Selectivity in Chemical Reactions. NATO ASI Series, vol 245. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3047-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3047-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7870-2

  • Online ISBN: 978-94-009-3047-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics