Skip to main content

Parameterization of the Planetary Boundary Layer in Large-Scale Atmospheric Models

  • Chapter
Physically-Based Modelling and Simulation of Climate and Climatic Change

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

This chapter covers the basis of parameterization techniques used for the representation of the planetary boundary layer in large-scale atmospheric models that are intended for weather forecasting or climate simulation. After introductory remarks on the planetary boundary layer (PBL) and the need for its parameterization in atmospheric models, the main topics addressed include the methods to parameterize the surface fluxes, the methods to compute the redistribution of the fluxes among the various model layers, and the problems related to the implementation and validation of the schemes. Surface flux formulations are usually derived from surface layer or bulk PBL similarity theory. The redistribution of surface fluxes within a model is computed by bulk PBL approaches, by eddy-coefficient approximations, or by simplified forms of higher-order-closure turbulence formulations. Special attention is given here to the parameterization of PBL moist processes. The last section on validation summarizes the available techniques and addresses the problem of the Impact of PBL schemes within a global model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, B. A., 1981: ‘Parameterization of trade cumulus cloud amounts.’ J. Atmos. Sci., 38, 97–105.

    Article  Google Scholar 

  • André, J. C., and C. Blondin, 1986: ‘On the effective roughness length for use in numerical three-dimensional models.’ Bound. Layer Meteor., 35, 231–245.

    Article  Google Scholar 

  • Arakawa, A., 1972: ‘Design of the UCLA general circulation model.’ Technical Report No. 7, Department of Meteorology, University of California, Los Angeles.

    Google Scholar 

  • Artaz, M. A., and J. C. André, 1980: ‘Similarity study of entrainment in convective mixed layers.’ Bound. Layer Meteor., 19, 51–66.

    Article  Google Scholar 

  • Barker, E. J., and T. L. Baxter, 1975: ‘A note on the computation of atmospheric surface layer fluxes for use In numerical modelling.’ J. Appl. Meteor., 14, 620–622.

    Article  Google Scholar 

  • Benoit, R., 1976: ‘A comprehensive parameterization of the atmospheric boundary layer for general circulation models.’ Ph.D. Thesis, Department of Meteorology, Mill University.

    Google Scholar 

  • Betts, A. K., 1973: ‘Non-precipitating cumulus convection and its parameterization.’ Quart. J. Roy. Meteor. Soc., 99, 178–196.

    Article  Google Scholar 

  • Blackadar, A. K., 1962: ‘The vertical distribution of wind and turbulent exchange in a neutral atmosphere.’ J. Geophys. Res., 67, 3095–3102.

    Article  Google Scholar 

  • Brutsaert, W. H., 1982: Evaporation into the Atmosphere. Reidel, Dordrecht, 199 pp.

    Google Scholar 

  • Businger, J. A., J. C. Wyngaard, Y. Izumi and E. F. Bradley, 1971: ‘Flux profile relationships in the atmospheric surface layer.’ J. Atmos. Sci., 18, 51–73.

    Google Scholar 

  • Carson, D. J., 1982: ‘Current parameterizations of land-surface processes in atmospheric general circulation models.’ In Land-Surface Processes in Atmospheric General Circulation Models, ed. P. S. Eagleson. Cambridge University Press.

    Google Scholar 

  • Clarke, R. H., 1970: ‘Recommended methods for the treatment of the boundary layer in numerical models.’ Aust. Met. Mag., 18, 51–73.

    Google Scholar 

  • Deardorff, J. W., 1967: ‘Empirical dependence of the eddy coefficient for heat upon stability above the lowest 50 m.’ J. Appl. Meteor., 6, 631–643.

    Article  Google Scholar 

  • Deardorff, J. W., 1968: ‘Dependence of air-sea transfer coefficients on bulk stability.’ J. Geophys. Res., 73, 2549–2557.

    Article  Google Scholar 

  • Deardorff, J. W., 1972: ‘Parameterization of the planetary boundary layer for use In general circulation models.’ Mon. Wea. Rev., 100, 93–106.

    Article  Google Scholar 

  • Deardorff, J. W., 1976a: ‘Usefulness of liquid-water potential temperature in a shallow cloud model.’ J. Appl. Meteor., 15, 98–102.

    Article  Google Scholar 

  • Deardorff, J. W., 1976b: ‘On the entrainment rate of a stratocumulus-topped mixed layer.’ Quart. J. Roy. Meteor. Soc., 102, 563–582.

    Article  Google Scholar 

  • Delsol, F., M. Miyakoda and R. M. Clarke, 1971: ‘Parameterised processes in the surface boundary layer of an atmospheric circulation model.’ Quart. J. Roy. Meteor. Soc., 97, 184–208.

    Article  Google Scholar 

  • Dyer, A. J., 1974: ‘A review of flux-profile relationships.’ Bound. Layer Meteor., 7, 363–372.

    Article  Google Scholar 

  • Gates, W. L., 1988: ‘Climate and the climate system.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, Dordrecht, 3–21.

    Google Scholar 

  • Gates, W. L., E. S. Batten, A. B. Kahle and A. B. Nelson, 1971: ‘A documentation of the Mintz-Arakawa two-level atmospheric general circulation model.’ R-877-ARPA, Rand Corporation.

    Google Scholar 

  • Kraus, E. B., 1972: Atmosphere-Ocean Interaction. CTarendon Press, Oxford, 275 pp.

    Google Scholar 

  • Laval, K., 1988: ‘Land surface processes.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, Dordrecht, 285–306.

    Google Scholar 

  • Lettau, H., 1950: ‘A re-examination of the “Leipzig” wind profile considering some relations between wind and turbulence in the frictional layer.’ Tellus, 2, 125–129.

    Article  Google Scholar 

  • Louis, J.-F., 1979: ‘A parametric model of vertical eddy fluxes in the atmosphere.’ Bound. Layer Meteor., 17, 187–202.

    Article  Google Scholar 

  • Mahrt, L., 1981: ‘The early evening boundary layer transition.’ Quart. J. Roy. Meteor. Soc., 107, 329–343.

    Article  Google Scholar 

  • Mahrt, L., J.-C. Andrfe and R. C. Heald, 1982: ‘On the depth of the nocturnal boundary layer.’ J. Appl. Meteor., 21, 90–92.

    Article  Google Scholar 

  • Manton, M. J., 1983: ‘A parameterization of shallow cumulus convection.’ Proc. of ECMWF Workshop on Convection in Large-Scale Numerical Models, 109–138.

    Google Scholar 

  • Mellor, G. L., and T. Yamada, 1974: ‘A hierarchy of turbulence closure models for the planetary boundary layers.’ J. Atmos. Sci., 31, 1791–1806.

    Article  Google Scholar 

  • Mintz, Y., 1984: ‘The sensitivity of numerically simulated climates to land surface boundary conditions.’ In Global Climate, ed. J. T. Houghton, Cambridge University Press, 79–105.

    Google Scholar 

  • Miyakoda, R., and J. Sirutis, 1977: ‘Comparative integrations of global models with various parameterized process of subgrid-scale vertical transports: Description of the parameterizations.’ Beit. Phys. Atmos., 50, 445–487.

    Google Scholar 

  • Monin, A. S., and A. M. Obukhov, 1954: ‘Basic regularity in turbulent mixing in the surface layer of the atmosphere.’ Akad. Nauk. SSSR., Trud. Geoflz. Inst., Tr., 24, 163–187.

    Google Scholar 

  • Monin, A. S., and S. S. Zilitinkevich, 1974: ‘Similarity theory and resistance laws for the planetary boundary layer.’ Bound. Layer Meteor., 7, 391–397.

    Article  Google Scholar 

  • O’Brien, J. J., 1970: ‘A note on the vertical structure of the eddy exchange coefficient in the PBL.’ J. Atmos. Sci., 27, 1213–1215.

    Article  Google Scholar 

  • Panofsky, H. A., 1963: ‘Determination of stress from wind and temperature measurements.’ Quart. J. Roy. Meteor. Soc., 89, 109–111.

    Google Scholar 

  • Paulson, C. A., 1970: ‘The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.’ J. Appl. Met., 9, 857–861.

    Article  Google Scholar 

  • RandTT D., J. A. Abeles and G. Corsetti, 1985: ‘Seasonal circulations of the PBL and PBL strato-cumulus clouds with a general circulation model.’ J. Atmos. Sci., 42, 641–676.

    Article  Google Scholar 

  • Rowntree, P. R., 1983: ‘Sensitivity of general circulation models to land surface processes.’ In Proceedings of Workshop on Intercomparison of Large-Scale Models for Extended Range Forecasts, ECMWF, 225–261.

    Google Scholar 

  • Sellers, P., Y. Mintz, Y. Sud and A. Dalcher, 1988: ‘A simple biosphere model (S) for use within general circuation models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, Dordrecht, 307–330.

    Google Scholar 

  • Sommeria, G., and J. W. Deardorff, 1977: ‘Subgrid scale condensation in cloud models.’ J. Atmos. Sci., 34, 344–355.

    Article  Google Scholar 

  • Suarez, M. J., A. Arakawa and D. A. Randall, 1983: ‘The parameterization of the PBL in the UCLA general circulation model: Formulation and results.’ Mon. Wea. Rev., 111, 2224–2243.

    Article  Google Scholar 

  • Tennekes, H., and A. G. M. Driedonks, 1981: ‘Basic entrainment equations for the atmospheric boundary layer.’ Bound. Layer Meteor., 20, 515–531.

    Article  Google Scholar 

  • Therry, G., and P. Lacarrere, 1983: ‘Improving the eddy kinetic energy model for planetary boundary-layer description.’ Bound. Layer Meteor., 25, 63–88.

    Article  Google Scholar 

  • Tiedtke, M., 1988: ‘Parameterization of cumulus convection in large-scale models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, Dordrecht, 375–431.

    Google Scholar 

  • Tiedtke, M., W. A. Heckley and J. Slingo, 1987: ‘Tropical forecast at ECMWF: On the influence of physical parameterization on the mean structure of forecasts and analyses.’ Submitted to Quart. J. Roy. Meteor. Soc.

    Google Scholar 

  • U.S. National Academy of Sciences, 1975: ‘Understanding Climate Change.’ Report of the Panel on Climatic Variation of the U.S. Committee for GARP, National Academy of Sciences, Washington, DC, 239 pp.

    Google Scholar 

  • Yamada, T., 1976: ‘On the similarity functions A, B and C of the planetary boundary layer.’ J. Atmos. Sci., 33, 781–793.

    Article  Google Scholar 

  • Zilitinkevich, S. S., and D. V. Chalikov, 1968: ‘The laws of resistance and of heat and moisture exchange in the interaction between the atmosphere and the underlying surface.’ Izv. Acad. Sci., USSR, Atmospheric and Oceanic Phys., 4, 765–772.

    Google Scholar 

  • Zilitinkevich, S. S., and J. W. Deardorff, 1974: ‘Similarity theory for the planetary boundary layer of time-dependent height.’ J. Atmos. Sci., 32, 1449–1452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sommeria, G. (1988). Parameterization of the Planetary Boundary Layer in Large-Scale Atmospheric Models. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3041-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3041-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7867-2

  • Online ISBN: 978-94-009-3041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics