Skip to main content

Land Surface Processes

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 243))

Abstract

The exchanges between the Earth’s surface and the atmosphere are defined by equations which depend on the temperature and humidity of the surface. The different schemes used in GCMs to parameterize the surface temperature are reviewed. The budget equation for soil moisture is established and its impact on the evaporation rate is assessed. The usual formulations for actual and potential evaporation rates are discussed. The development of models which simulate the exchanges of a vegetated surface with the atmosphere is mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André, J. C., 1982: ‘Parameterization schemes for the planetary boundary layer. A brief review and some general remarks.’ Proceedings of the 1981 ECMWF Workshop on PBL Parameterization, 15–34.

    Google Scholar 

  • André, J. C., J. P. Goutorbe and A. Perrier, 1986: ‘HAPEX-MOBILHY: A hydrologie and atmospheric experiment for the study of water budget and evaporation flux at the climatic scale.’ Bull. Amer. Meteor. Soc., 67, 138–144.

    Article  Google Scholar 

  • Arakawa, A., 1972: ‘Design of the UCLA general circulation model.’ Numerical Simulation of Weather and Climate, Technical Report No. 7, Department of Meteorology, University of California, Los Angeles, CA, 116 pp.

    Google Scholar 

  • Arakawa, A., and Y. Mintz, 1974: ‘The UCLA atmospheric general circulation model.’ Department of Meteorology, University of California, Los Angeles, CA.

    Google Scholar 

  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance. Elsevier, Amsterdam, 179 pp.

    Google Scholar 

  • Bhumralkar, C. M., 1975: ‘Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model.’ J. Appi. Meteor., 14, 1246–1258.

    Article  Google Scholar 

  • Blondin, C. A., 1986: ‘Treatment of land-surface properties in the ECMWF model.’ In Proc. Conf. on Parameterization of Land-surface Characteristics, Use of Satellite Data in Climate Models, and First Results of ISLSCP, Rome, 2–6 December 1985, ESA SP-248, 53–60.

    Google Scholar 

  • Bouchet, R. J., 1963: ‘Evapotransporation reelle et potentielle, signification climatique.’ Intern. Assoc. Sci. Hydrol., 62, 134–142.

    Google Scholar 

  • Brutsaert, W., and H. Strieker, 1979: ‘An advection-aridity approach to estimate actual and regional évapotranspiration.’ Water Resour. Res., 15, 443–450.

    Article  Google Scholar 

  • Brutsaert, W., 1982: Evaporation into the Atmosphere. Reidel, Dordrecht, 299 pp.

    Google Scholar 

  • Budyko, M. I., 1974: Climate and Life. International Geophysics Series, Academic Press, New York, 508 pp.

    Google Scholar 

  • Carson, D. J., 1982: ‘Current parameterizations of land surface processes in atmospheric general circulation models.’ Land Surface Processes in Atmospheric Circulation Models, ed. P. S. Eagleson, Cambridge University Press, Cambridge, 67–108.

    Google Scholar 

  • Carson, D. J., 1986: ‘Parameterizations of land surface processes in Meteorological Office numerical weather prediction and climate models.’ Met. Office Report, Met 0 20, Tech. Note No. 37, 30 pp.

    Google Scholar 

  • Charney, J. G., 1975: ‘Dynamics of deserts and drought in the Sahel.’ Quart. J. Roy. Meteor. Soc., 101, 193–202.

    Article  Google Scholar 

  • Charney, J. G., W. J. Quirk, S. Chow and J. Kornfield, 1977: ‘A comparative study of the effects of albedo change on drought insemi-arid regions.’ J. Atmos. Sci., 34, 1366–1385.

    Article  Google Scholar 

  • Chervin, R. M., 1979: ‘Response of the NCAR general circulation model to changed land surface albedo.’ Report of the JOC Study Conference on Climate Models, Vol. 1, GARP Publication Series No. 22, 563–581.

    Google Scholar 

  • Corby, G. A., A. Gilchrist and P. R. Rowntree, 1977: ‘United Kingdom Meteorological Office five level general circulation model.’ In Methods in Computational Physics, 17, ed. J. Chang, Academic Press, New York, 67–110.

    Google Scholar 

  • Deardorff, J. W., 1977: ‘A parameterization of ground surface moisture content for use in atmospheric prediction models.’ J. Appl. Meteor., 16, 1182–1185.

    Article  Google Scholar 

  • Deardorff, J. W., 1978: ‘Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation.’ J. Geophys. Res., 83, 1887–1903.

    Article  Google Scholar 

  • Delsol, F., K. Miyakoda and R. H. Clarke, 1971: ‘Parameterized processes in the surface boundary layer of an atmospheric circulation model.’ Quart. J. Roy. Meteor. Soc., 97, 181–208.

    Article  Google Scholar 

  • Dickinson, R., 1984: ‘Modeling évapotranspiration for three-dimensional global climate models.’ In Climate Processes and Climate Sensitivity, eds. J. E. Hansen and T. Takahashi, Geophys. Monogr., 29, Amer. Geophys. Union, 58–72.

    Chapter  Google Scholar 

  • Dickinson, R., 1985: ‘Status of the formulation of the land-surface hydrological processes in GCMs.’ World Climate Programme No. 96.

    Google Scholar 

  • Garratt, J. R., 1977: ‘Review of drag coefficients over oceans and continents.’ Mon. Wea. Rev., 105, 915–929.

    Article  Google Scholar 

  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff

    Google Scholar 

  • R. Ruedy and L. Travis, 1983: ‘Efficient three dimensional global models for climate studies: Models I and II.’ Mon. Wea. Rev., 111, 609–662.

    Article  Google Scholar 

  • Holloway, J. L., Jr., and S. Manabe, 1971: ‘Simulation of climate by a global general circulation model. I. Hydrological cycle and heat balance.’ Mon. Wea. Rev., 99, 335–370.

    Article  Google Scholar 

  • Hunt, B. G., 1985: ‘A model study of some aspects of soil hydrology relevant to climatic modelling.’ Quart. J. Roy. Meteor. Soc., 111, 1071–1085.

    Article  Google Scholar 

  • Idso, S. B., and R. D. Jackson, 1975: ‘The dependence of bare soil albedo on soil water content.’ J. Appl. Meteor., 14, 109–113.

    Article  Google Scholar 

  • Kasahara, A., and W. Washington, 1971: ‘General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations.’ J. Atmos. Sci., 28, 657–701.

    Article  Google Scholar 

  • Kondratyev, K. Ya., V. I Korzov, V. V. Mukhenberg and L. N. Dyachenko, 1982: ‘The shortwave albedo and surface emissivity.’ In Land Surface Processes in Atmospheric Circulation Models, ed. P. S. Eagleson, Cambridge University Press, Cambridge, 463–514.

    Google Scholar 

  • Laval, K., C. Ottlé, A. Perrier and Y. Serafini, 1984: ‘Effect of parameterization on climate simulated by a GCM.’ In New Perspectives in Climate Modelling, Elsevier, Amsterdam, 223–247.

    Google Scholar 

  • Laval, K., and L. Picon, 1986: ‘Effect of a change of the surface albedo of the Sahel on climate.’ J. Atmos. Sci., 43, 2418–2429.

    Article  Google Scholar 

  • Louis, J.-F., M. Tiedtke and J.-F. Geleyn, 1982: ‘A short history of the PBL parameterizations at ECMWF.’ Proceedings of the 1981 ECMWF Workshop on PBL Parameterisation, 59–71.

    Google Scholar 

  • Manabe, S., 1969: ‘Climate and the ocean circulation. The atmospheric circulation and the hydrology of the Earth’s surface.’ Mon. Wea. Rev.,97, 739–774.

    Article  Google Scholar 

  • Matthews, E., 1983: ‘Global vegetation and land use: New high resolution data bases for climate studies.’ J. Clim. Appl. Meteor., 22, 474–487.

    Article  Google Scholar 

  • Mintz, Y., 1984: ‘The sensitivity of numerically simulated climates to land-surface boundary conditions.’ In The Global Change, ed. J. T. Houghton, Cambridge University Press, Cambridge, 79–105.

    Google Scholar 

  • Monteith, J. L., 1976: Vegetation and the Atmosphere, Vol. 2. Academic Press, New York, 439 pp.

    Google Scholar 

  • Monteith, J. L., 1981: ‘Evaporation and surface temperature.’ Quart. J. Roy. Meteorol. Soc., 107, 1–27.

    Article  Google Scholar 

  • Namlas, J., 1985: ‘Some empirical evidence for the influence of snow cover on temperature and precipitation.’ Mon. Wea. Rev., 113, 1542–1553.

    Article  Google Scholar 

  • Ottlé, C., 1983: ‘Effet d’un changement de parametrisation de l’évapotranspiration dans un modele climatique.’ These de 3e cycle de l’Universite Pierre et Marie Curie. Paris 6e, 180 pp.

    Google Scholar 

  • Penman, H. L., 1948: ‘Natural evaporation from open water, bare soil and grass.’ Proc. Roy. Soc., London, A193, 120–146.

    Google Scholar 

  • Picon, L., 198“3! ‘Etude de l’influence de l’albedo du sol dans les phénomènes de désertification au Sahel à l’aide du modèle de circulation générale du LMD.’ These de 3e cycle de l’Université Pierre et marie Curie, Paris 6, 184 pp.

    Google Scholar 

  • Posey, J. W., and P. F. Clapp, 1964: ‘Global distribution of normal surface albedo.’ Geofisica International, 4, 33–48.

    Google Scholar 

  • Priestley, C. H. B., and R. J. Taylor, 1972: ‘On the assessment of surface heat flux and evaporation using large scale parameters.’ Mon. Wea. Rev., 100, 81–92.

    Article  Google Scholar 

  • Rind, D., 1982: ‘The influence of ground moisture conditions in North America on summer climate as modeled in the GISS GCM.’ Mon. Wea. Rev., 110, 1487–1494.

    Article  Google Scholar 

  • Rowntree, P. R., and J. A. Bolton, 1983: ‘Simulation of the atmospheric response to soil moisture anomalies over Europe.’ Quart. J. Roy. Meteor. Soc., 109, 501–526.

    Article  Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud and A. Dalcher, 1986: ‘A simple biosphere Model (S) for use within general circulation models.’ J. Atmos. Sci., 43, 505–530.

    Article  Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud and A. Dalcher, 1988: ‘A brief description of the simple biosphere model (S).’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed., Kluwer Academic Publishers, Dordrecht, 307–330.

    Google Scholar 

  • Sellers, W. D., 1965: Physical Climatology. The University of Chicago Press, Chicago, 272 pp.

    Google Scholar 

  • Smagorinsky, J., S. Manabe, J. L. Holloway, 1965: ‘Numerical results from a nine level general circulation model.’ Mon. Wea. Rev., 93, 727–767.

    Article  Google Scholar 

  • Sommeria, G., 1988: ‘Parameterization of the planetary boundary layer in large-scale atmospheric models.’ In Physically-Based Modelling and Simulation of Climate and Climatic Change, Vol. I, M. E. Schlesinger, ed.,Kluwer Academic Publishers, Dordrecht, 331–374.

    Google Scholar 

  • Sud, Y. C., and M. Fenessy, 1982: ‘A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM.’ J. Climatol., 2, 105–125.

    Article  Google Scholar 

  • Sud, Y. C., and W. E. Smith, 1984: ‘Ensemble formulation of surface fluxes and improvement in évapotranspiration and cloud parameterizations in a GCM.’ Boundary Layer Meteorology, 29, 185–210.

    Article  Google Scholar 

  • Sud, Y. C., and W. E. Smith, 1985a: ‘The influence of surface roughness of deserts on the July circulation.’ Boundary Layer Meteorology, 33, 15–49.

    Article  Google Scholar 

  • Sud, Y.C., and W. E. Smith, 1985b: ‘Influence of local land-surface processes on the Indian Monsoon: A numerical study.’ J. Appl. Meteor., 24, 1015–1036.

    Article  Google Scholar 

  • Walker, J. M., and P. R. Rowntree, 1977: ‘The effect of soil moisture on circulation and rainfall in a tropical model.’ Quart. J. Roy. Meteor. Soc., 103, 29–46.

    Article  Google Scholar 

  • Warrilow, D. A., A. B. Sangster and A. Slingo, 1986: ‘Modelling of land surface processes and their influence on European climate.’ United Kingdom Met. Office Report, Met 020, Tech. Note No. 38, 92 pp.

    Google Scholar 

  • Wilson, M. F., and A. Henderson-Sellers, 1985: ‘A global archive of land cover and soils data for use in general circulation climate models.’ J. Climatol., 5, 119–143.

    Article  Google Scholar 

  • Wilson, M. F., A. Henderson-Sellers, R. E. Dickinson and P. J. Kennedy, 1987: ‘Sensitivity of the Biosphere-Atmosphere Transfer Scheme (BATS) to the inclusion of variable soil characteristics.’ J. Clim. Appl. Meteor,26, 341–362.

    Article  Google Scholar 

  • Yeh, T. C., R. T. Wetherald and S. Manabe, 1984: ‘The effect of soil moisture on the short term climate and hydrology change. A numerical experiment.’ Mon. Wea. Rev., 112, 474–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Laval, K. (1988). Land Surface Processes. In: Schlesinger, M.E. (eds) Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO ASI Series, vol 243. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3041-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3041-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7867-2

  • Online ISBN: 978-94-009-3041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics